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ABSTRACT 

In this research, we have introduced Galerkin method for finding approximate solutions of Fredholm 
Volterra Integral Equation (FVIE) of 2nd kind, and this method shows the result in respect of the linear 
combinations of basis polynomials. Here, BF (product of Bernstein and Fibonacci polynomials), CH 
(product of Chebyshev and Hermite polynomials), CL (product of Chebyshev and Laguerre polynomials), 
FL (product of Fibonacci and Laguerre polynomials) and LLE (product of Legendre and Laguerre 
polynomials) polynomials are established and considered as basis function in Galerkin method.  Also, we 
have tried to observe the behavior of all these approximate solutions finding from Galerkin method for 
different problems and then a comparison is shown using some standard error estimations. In addition, we 
observe the error graphs of numerical solutions in Galerkin method for different problems of FVIE of second 
kind. 
 

© 2021 Published by Bangladesh Mathematical Society 
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1. Introduction 

Integral equation is a key mathematical perceptive in the area of mathematics, and it has vast applications in 
physics, biology, economics, signal processing, engineering and other fields of science. Many ordinary and 
partial differential equations associated with different initial and boundary values can be reduced to different 
integral equations. There are various types of integral equations, among them FIEs and VIEs are the main 
two classes of integral equations. Both of these have first and second kind, linear and nonlinear form. 
 
 

Nomenclature 

BF product of Bernstein and Fibonacci polynomials 

https://doi.org/10.3329/ganit.v41i1.55022
mailto:gsahamath@du.ac.bd
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CH 
CL 
FL 
LLE 

product of Chebyshev and Hermite polynomials 
product of Chebyshev and Laguerre polynomials 
product of Fibonacci and Laguerre polynomials 
product of Legendre  and Laguerre polynomials 

 
Many analytical and numerical methods are developed to solve different types of FVIEs. Adomain 
Decomposition, Quadrature, Galerkin, Collocation, different version of Wavelet, successive substitutions 
methods are introduced and researched by many researchers. Maleknejad and Hadizadeh [1] suggested 
Adomain decomposition method for mixed nonlinear FVIE and they also discussed about the limitof it. 
Maleknejad and FadaeiYami [2] used Adomain decomposition method to solve the system of VFIEs. Hendi 
and Bakodah [3] compared approximate solution with the exact solution which is obtained from discrete 
Adomain decomposition method. They used FVIE in two dimensional space and reported that it’s a method 
that can be used to solve nonlinear integral equations in two dimensional space. Hendi and Albugami [4] 
solved FVIE of second kind using Galerkin and Collocation method and they considered continuous kernel 
with respect to position and time. Moreover, Mustafa and Ghanim [5] discussed quadrature methods i.e, 
Trapezoidal rule, Weddle’s rule and Richardson’s extrapolation to solve linear VFIEs numerically. More 
recently, Molla and Saha [6]showed the approximate solution of FVIE of second kind using the methods 
used by Hendi and Albugami [4]. They have reported that the performance of different polynomials and 
collocation points are consistent for both these methods. Abdou et al. [7] established the general solution of 
VFIEs with discontinuous kernel in a Banach Space using separation of variables method. 
 

In this research, Galerkin method is used to find the approximate solution of FVIE of 2nd kind where new set 
of polynomials (BF, CH, CL, FL, LLE polynomials) are used as basis functions. Here, BF refers to product 
of Bernstein and Fibonacci polynomials, CH refers to product of Chebyshev and Hermite polynomials, CL 
refers to product of Chebyshev and Laguerre polynomials, FL refers to product of Fibonacci and Laguerre 
polynomials, LLE refers to product of Legendre and Laguerre polynomials. As far our knowledge, BF, CH, 
CL, FL, LLE polynomials are not introduced before to find the approximate solutions of FVIE of second 
kind. In recent times, Molla and Saha [8] used LH polynomials as basis function in Galerkin method for 
finding approximate solution of FIE of 2nd kind within a very short description. A brief discussion about the 
performance of above mentioned polynomials for the solution of FVIE of 2nd kind is presented in this paper.  
 

This article is designed as follows: In §2, brief introduction of five new set of polynomials (BF, CH, CL, FL, 
LLE) are given. After that, details formulation of Galerkin method in order to find approximate solutions of 
FVIE of 2nd kind is illustrated in §3. Then, numerical results of the Galerkin method using different 
polynomials are computed, consequent absolute errors are presented graphically and RMSE and MAE are 
calculated in §4. Finally, the study concludes with a brief conclusion in §5. 

2. Introduction of Polynomials 

Hermite, Chebyshev, Laguerre, Fibonacci and Legendre polynomials are the most widely used classical 
orthogonal polynomials in approximation theory and numerical analysis and they used often in order to find 
the approximate solutions of different kinds of integral equations. In this research, some special and new sets 
of polynomials are introduced, and they are obtained as a product of the well known polynomials. 
Product of Bernstein and Fibonacci polynomials (BF): 

𝐵𝐵𝐵𝐵𝑖𝑖(𝑢𝑢) = 𝐵𝐵𝑖𝑖(𝑢𝑢)𝐹𝐹𝑖𝑖(𝑢𝑢) (2.1) 

Here we use fourth degree Bernstein polynomials over the interval [0, 1] and first five BF polynomials are 
presented underneath: 
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�

𝐵𝐵𝐵𝐵0(𝑢𝑢) = 1 − 4𝑢𝑢 + 6𝑢𝑢2 − 4𝑢𝑢3 + 𝑢𝑢4

𝐵𝐵𝐵𝐵1(𝑢𝑢) = 4𝑢𝑢2 − 12𝑢𝑢3 + 12𝑢𝑢4 − 4𝑢𝑢5

𝐵𝐵𝐵𝐵2(𝑢𝑢) = 6𝑢𝑢2 − 12𝑢𝑢3 + 12𝑢𝑢4 − 12𝑢𝑢5 + 6𝑢𝑢6

𝐵𝐵𝐵𝐵3(𝑢𝑢) = 8𝑢𝑢4 − 8𝑢𝑢5 + 4𝑢𝑢6 − 4𝑢𝑢7

𝐵𝐵𝐵𝐵4(𝑢𝑢) = 𝑢𝑢4 + 3𝑢𝑢6 + 𝑢𝑢8 ⎭
⎪
⎬

⎪
⎫

 

 
 

(2.2) 

Product of Chebyshev and Hermite polynomials (CH): 

𝐶𝐶𝐶𝐶𝑖𝑖(𝑢𝑢) = 𝐶𝐶𝑖𝑖(𝑢𝑢)𝐻𝐻𝑖𝑖(𝑢𝑢) (2.3) 

Also, some of the CH polynomials are shown here: 

�

𝐶𝐶𝐶𝐶0(𝑢𝑢) = 1
𝐶𝐶𝐶𝐶1(𝑢𝑢) = 2𝑢𝑢2

𝐶𝐶𝐶𝐶2(𝑢𝑢) = 2 − 8𝑢𝑢2 + 8𝑢𝑢4

𝐶𝐶𝐶𝐶3(𝑢𝑢) = 36𝑢𝑢2 − 72𝑢𝑢4 + 32𝑢𝑢6

𝐶𝐶𝐶𝐶4(𝑢𝑢) = 12 − 144𝑢𝑢2 + 496𝑢𝑢4 − 512𝑢𝑢6 + 128𝑢𝑢8⎭
⎪
⎬

⎪
⎫

 

 
 

(2.4) 

Product of Chebyshev and Laguerre polynomials (CL): 

𝐶𝐶𝐶𝐶𝑖𝑖(𝑢𝑢) = 𝐶𝐶𝑖𝑖(𝑢𝑢)𝐿𝐿𝑖𝑖(𝑢𝑢) (2.5) 

Also, some of the CL polynomials are shown here: 
 

�

𝐶𝐶𝐶𝐶0(𝑢𝑢) = 1
𝐶𝐶𝐶𝐶1(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢2

𝐶𝐶𝐶𝐶2(𝑢𝑢) = −1 + 2𝑢𝑢 +
3𝑢𝑢2

2
− 4𝑢𝑢3 + 𝑢𝑢4

𝐶𝐶𝐶𝐶3(𝑢𝑢) = −3𝑢𝑢 + 9𝑢𝑢2 −
𝑢𝑢3

2
−

23𝑢𝑢4

2
+ 6𝑢𝑢5 −

2𝑢𝑢6

3

𝐶𝐶𝐶𝐶4(𝑢𝑢) = 1 − 4𝑢𝑢 − 5𝑢𝑢2 +
94𝑢𝑢3

3
−

383𝑢𝑢4

24
−

80𝑢𝑢5

3
+

71𝑢𝑢6

3
−

16𝑢𝑢7

3
+
𝑢𝑢8

3 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 
 
 
 

(2.6) 

Product of Fibonacci and Laguerre polynomials (FL): 

𝐹𝐹𝐹𝐹𝑖𝑖(𝑢𝑢) = 𝐹𝐹𝑖𝑖(𝑢𝑢)𝐿𝐿𝑖𝑖(𝑢𝑢) (2.7) 

Also, some of the FL polynomials are shown here: 

�

𝐹𝐹𝐹𝐹0(𝑢𝑢) = 1
𝐹𝐹𝐹𝐹1(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢2

𝐹𝐹𝐹𝐹2(𝑢𝑢) = 1 − 2𝑢𝑢 +
3𝑢𝑢2

2
− 2𝑢𝑢3 +

𝑢𝑢4

2

𝐹𝐹𝐹𝐹3(𝑢𝑢) = 2𝑢𝑢 − 6𝑢𝑢2 + 4𝑢𝑢3 −
10𝑢𝑢4

3
+

3𝑢𝑢5

2
−
𝑢𝑢6

6

𝐹𝐹𝐹𝐹4(𝑢𝑢) = 1 − 4𝑢𝑢 + 6𝑢𝑢2 −
38𝑢𝑢3

3
+

241𝑢𝑢4

24
− 6𝑢𝑢5 +

25𝑢𝑢6

8
−

2𝑢𝑢7

3
+
𝑢𝑢8

24⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 
 
 
 

(2.8) 

 
Product of Laguerre and Legendre polynomials (LLE): 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖(𝑢𝑢) = 𝐿𝐿𝑖𝑖(𝑢𝑢)𝐿𝐿𝐿𝐿𝑖𝑖(𝑢𝑢) (2.9) 

Also, some of the LLE polynomials are shown here: 
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�

𝐿𝐿𝐿𝐿𝐿𝐿0(𝑢𝑢) = 1
𝐿𝐿𝐿𝐿𝐿𝐿1(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢2

𝐿𝐿𝐿𝐿𝐿𝐿2(𝑢𝑢) = −
1
2

+ 𝑢𝑢 +
5𝑢𝑢2

4
− 3𝑢𝑢3 +

3𝑢𝑢4

4

𝐿𝐿𝐿𝐿𝐿𝐿3(𝑢𝑢) = −
3𝑢𝑢
2

+
9𝑢𝑢2

2
+
𝑢𝑢3

4
−

29𝑢𝑢4

4
+

15𝑢𝑢5

4
−

5𝑢𝑢6

12

𝐿𝐿𝐿𝐿𝐿𝐿4(𝑢𝑢) =
3
8
−

3𝑢𝑢
2
−

21𝑢𝑢2

8
+

59𝑢𝑢3

4
−

439𝑢𝑢4

64
− 15𝑢𝑢5 +

415𝑢𝑢6

32
−

35𝑢𝑢7

12
+

35𝑢𝑢8

192 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 
 
 
 

(2.10) 

3. Numerical Method 

In Galerkin methods [9], solution is obtained in terms of basis functions. In order to find the approximate 
solution, next step is to determine the unknown parameters in trial solution. So Galerkin method gives a 
polynomial as an approximate solution at each points instead of values, and we can find values at any points 
within the defined domain. The details of the numerical formulation of FVIE of 2nd kind are presented in 
[6]. 

4. Results and Discussion 

Galerkin method is used to obtain the approximate solution of linear FVIE of 2nd kind, and we tried to 
explore the performance of Galerkin method by using a set of new types of polynomials (BF, CH, CL, FL, 
LLE polynomials). Here, we use exact solution of the numerical problems in order to check the accuracy of 
our code and to examine the recital of different polynomials with regard to absolute errors. Numerical results 
and graphs are generated by using Wolfram Mathematica 9. 
 

In the first section, we will investigate the approximate solutions of the problem using Galerkin method 
where we will use BF, CH, CL, FL, LLE polynomials as basis functions. Secondly, we will see the 
performance of basis functions by observing error graphs using n = 2, 3, 4, 5. Finally, we will calculate 
RMSE and MAE for the numerical solutions to observe the accuracy of Galerkin method for different basis 
functions. Here we consider two numerical examples to carry out the investigations and in both examples, 
domain of the problem is [0, 1]. 
 
Example 1: [6]  

𝜙𝜙(𝑥𝑥) + �𝑒𝑒𝑥𝑥+𝑡𝑡𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 − �𝑒𝑒𝑥𝑥+𝑡𝑡𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑥𝑥 − (𝑥𝑥 − 1)𝑒𝑒𝑥𝑥  ,   0 ≤ 𝑥𝑥 ≤ 1 (4.1) 

Exact solution of 𝜙𝜙(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜙𝜙(𝑥𝑥) = 𝑒𝑒−𝑥𝑥 . 
 
Firstly, Galerkin solution for linear FVIE of second kind with n = 2, 3, 4, 5 are presented in Tables A1 to A4 
with five special types of polynomials (BF, CH, CL, FL, LLE) called as basis functions. From Tables A1 to 
A4, it is evident that using BF, CH, CL, FL, LLE polynomials as basis function in Galerkin method in order 
to find numerical approximations of FVIEs of 2nd kind are possible, and it has shown that numerical 
approximations of all the polynomials are converging into the same direction. It is also examined that 
polynomial solutions in Galerkin method using BF, CH, CL, FL, LLE polynomials are different, but 
approximate solutions are approximately same for each of these polynomials with same degree. For 
example, in Table A5 we have shown five approximate polynomials solution using five different 
polynomials as basis function for n = 5 to verify the previous statement. It suggests that introducing these 
polynomials can be functional and these polynomials can be used to obtain approximate solutions in 
Galerkin method. And it is seen that there is an insignificant effect on the solution of FVIEs compared with 
the exact solution. In the second part, from Fig. 4.1, we have observed absolute error graphs of five new 
polynomials over the interval [0, 1] for n = 2, 3, 4, 5. 
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n = 2 n = 3 

  
n = 4 

 

n = 5 
Fig. 4.1: Absolute error graph for Example 1 

 
From this observation, we can claim that errors are decreasing as the values of n are increased. Hence, by 
increasing the values of n we can get desired accuracy using those basis polynomials. For this example, 
absolute errors are relatively high for BF and CH polynomials compared to the other polynomials. On the 
other hand, for FL polynomial absolute errors are significantly small for each values of n compared to the 
other polynomials. 
 
Finally, we want to justify and understand our approximate solutions and error graphs more precisely and for 
this reason standard errors such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are 
observed for the approximate solutions. RMSE and MAE are given in Table 4.1 for different values of n 
with five different polynomials. 

Table 4.1: RMSE and MAE results for Example 1 
 

 n = 2 n = 3 
Polynomials RMSE MAE RMSE MAE 

BF 0.1856936 0.1551874 0.0534938 0.0361026 
CH 0.0472953 0.0346472 0.0321639 0.0227020 
CL 0.0501415 0.0370874 0.0061832 0.00458443 
FL 0.0059065 0.0044154 0.0003886 0.00029313 

LLE 0.1513725 0.1066698 0.0152785 0.01132040 
 n = 4 n = 5 

Polynomials RMSE MAE RMSE MAE 
BF 0.0532509 0.0343142 0.0511507 0.0314623 
CH 0.0242799 0.0159440 0.0242745 0.0159268 
CL 0.0007080 0.0004955 0.0010927 0.0007841 
FL 0.0002347 0.0001849 0.0001209 0.0000852 

LLE 0.0018356 0.0012656 0.0019451 0.0013528 
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Above information shows that in all cases, both RMSEs and MAEs are decreased by increasing the values of 
n. It is again evident that FL polynomial gives the best accuracy of the approximate solution among the other 
polynomials for each values of n = 2, 3, 4, 5. Thus, for FL polynomial both errors are significantly small. 
 
Example 2: [6] 

𝜙𝜙(𝑥𝑥) + �𝑒𝑒𝑡𝑡 sin 𝑥𝑥 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 − �𝑒𝑒𝑡𝑡 cos 𝑥𝑥 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥) ,   0 ≤ 𝑥𝑥 ≤ 1 (4.2) 

where  

𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 −
1
2

(𝑒𝑒2𝑥𝑥 − 1) cos 𝑥𝑥 +
1
2

(𝑒𝑒2 − 1) sin 𝑥𝑥 (4.3) 

Exact solution of 𝜙𝜙(𝑥𝑥) is 𝜙𝜙(𝑥𝑥) = 𝑒𝑒𝑥𝑥  
 
Similar procedures have also done for the above problem, and try to carry out our observation for this 
numerical example. Results are presented in Tables A6 to A9 with n = 2, 3, 4, 5. From Tables A6 to A9, It is 
again remarked that we can find numerical solution of FVIE of 2nd by using BF, CH, CL, FL, LLE 
polynomials as basis function in Galerkin method, and we have got significant result for each case. 
Secondly, we observe absolute error graphs for BF, CH, CL, FL, LLE polynomials in Galerkin method over 
the interval [0, 1] which are presented in Fig. 4.2. 

  
n = 2 n = 3 

  
n = 4 n = 5 

Fig.4.2: Absolute error graph for Example 2 

We observe that errors reduce gradually as the values of n increase. For n = 4 & 5, absolute errors graphs are 
little high for BF and CH polynomials compared to the other polynomials. Similar findings are also observed 
for Example 1. It is observed that BF and CH polynomials exhibit higher functional values compare to other 
polynomials. This may play an important role to show higher absolute errors for these polynomials. 
According to the observation of the absolute error graphs, FL polynomial gives comparatively better results 
for each values of n in order to get approximate solutions of FVIEs of second kind in Galerkin method. In 
the last part, we have observed RMSE and MAE for each approximate solutions. RMSE and MAE are 
presented in Table 4.2 for n = 2, 3, 4 and 5. 
 

Table 4.2: RMSE and MAE results for Example 2 
 

 n = 2 n = 3 
Polynomials RMSE MAE RMSE MAE 

BF 0.129489 0.0967744 0.1033868 0.0704576 
CH 0.047037 0.0349461 0.0322473 0.0232427 
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CL 0.134701 0.1010860 0.0157194 0.0116686 
FL 0.015932 0.0119732 0.0019901 0.0015194 

LLE 0.399733 0.2743080 0.0401397 0.0298389 
 n = 4 n = 5 

Polynomials RMSE MAE RMSE MAE 
BF 0.0866670 0.056482 0.1027431 0.0695213 
CH 0.0250143 0.014217 0.0342948 0.0253551 
CL 0.0020563 0.001499 0.0022762 0.0017664 
FL 0.0006835 0.000535 0.0008029 0.0006282 

LLE 0.0052145 0.003625 0.0052129 0.0036167 
 
Based on above information, in all cases both RMSEs and MAEs are decreased by increasing the values of 
n. So, same conclusion is also considerable for this problem. 
 

Example 3:  

𝜙𝜙(𝑥𝑥) + � 𝑒𝑒𝑥𝑥−𝑡𝑡𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑
1

0
−� (𝑥𝑥 − 𝑡𝑡) 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑥𝑥

0
= 𝑓𝑓(𝑥𝑥) , 0 ≤ 𝑥𝑥 ≤ 1 (4.4) 

where  

𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 𝑥𝑥 + 1 (4.5) 

Exact solution of 𝜙𝜙(𝑥𝑥)is 𝜙𝜙(𝑥𝑥) = 𝑒𝑒𝑥𝑥 . 
 
Accordingly, Tables A11 to A14 showed approximate solutions of linear FVIE of 2nd kind using Galerkin 
method for n=2,3,4,5 with BF, CH, CL, FL and LLE polynomials as basis functions. In Table A15, we show 
approximate polynomial solution for BF, CH, CL, FL, LLE polynomials (using as basis function in Galerkin 
method) with n=5, and each polynomial is a polynomial of degree 10. Then, we extent our observation by 
representing error graphs for BF, CH, CL, FL, LLE polynomials in Galerkin method over the interval [0, 1] 
and they are presented in Fig. 4.3. 

  
n = 2 n = 3 

  
n = 4 n = 5 

Fig.4.3: Absolute error graph for Example 3 
 
We examine that absolute errors are decreasing significantly as the values of n increase. So, by increasing 
the values of n, it is possible to obtain desire accuracy of the problem. Finally, we have observed RMSE and 
MAE for each approximate solutions, and they are presented in Table 4.3 for n = 2, 3, 4 and 5. 
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Table 4.3: RMSE and MAE results for Example 3 
 

 n = 2 n = 3 
Polynomials RMSE MAE RMSE MAE 

BF 0.128485 0.0981224 0.1028080 0.0729980 
CH 0.046646 0.0357625 0.0319543 0.0237026 
CL 0.133949 0.1011620 0.0155413 0.0116668 
FL 0.015758 0.0121843 0.0020232 0.0015067 

LLE 0.394175 0.265560 0.0396560 0.0298728 
 n = 4 n = 5 

Polynomials RMSE MAE RMSE MAE 
BF 0.0861604 0.0578768 0.0748337 0.0482383 
CH 0.0242705 0.0169154 0.0193992 0.0126937 
CL 0.0020327 0.0014985 0.0001662 0.0001134 
FL 0.0006825 0.0005388 0.0000536 0.0000413 

LLE 0.0050217 0.0036309 0.0005045 0.0003298 
 

According to the above information, in all cases both RMSEs and MAEs are decreased by increasing the 
values of n, and FL polynomial gives better result. 
 
Conclusion 
 
In this paper, new polynomials called BF, CH, CL, FL, LLE polynomials are introduced, and among them 
CH, CL, FL and LLE polynomials are polynomials of degree 2n. Then Linear FVIE of second kind is solved 
by Galerkin method where BF, CH, CL, FL, LLE polynomials are considered as basis function. Moreover, 
RMSE and MAE are calculated for each approximate solutions to examine the performance of basis 
functions in Galerkin method. And it is seen that in Galerkin method all approximate solutions are almost 
similar for different basis functions with same power. It is also seen that BF, FL, LLE and CL polynomials 
take less time than BF polynomials. Throughout this observation, we claim that it is possible to find 
approximate solutions of FVIE of 2nd kind by using BF, CH, CL, FL, LLE polynomials as basis function in 
Galerkin method. We have also examined that FL polynomial which is considered as basis function in 
Galerkin method gives us better result compared to the other basis functions (BF, CH, CL, LLE 
polynomials). 
 
Conflict of Interest  
The authors do not report any financial or personal connections with other persons or organizations, which 
might negatively affect the contents of this publication and/or claim authorship rights to this publication.  
 
Publication Ethics  
Submitted manuscripts must not have been previously published by or be under review by another print or 
online journal or source.  
 
Funding  
This research work is a self funded research. 
  



Asma Akter Akhi and Goutam Saha /  GANIT J. Bangladesh Math. Soc. 41.1 (2021) 1–14 9 

References 
 
[1]  Maleknejad, K. & Hadizadeh, M. (1999). A new computational method for Volterra-Fredholm 

integral equation. Computers and Mathematics with Applications, 37, 1-8. 
[2]  Maleknejad, K. & FadaeiYami, M.R. (2006). A computational method for system of Volterra- 

Fredholm integral equations. Applied Mathematics and Computation, 183(1),589-595. 
[3]  Hendi, F.A. & Bakodah, H.O. (2012). Numerical solution of Fredholm-Volterra integral equation in 

two dimensional space by using discrete Adomain decomposition method. IJRRAS, 10(3), 466-471. 
[4]  Hendi, F.A. & Albugami, A.M. (2009). Numerical solution for Fredholm–Volterra integral equation 

of the second kind by using collocation and Galerkin methods. Journal of King Saud University 
(Science), 22, 37-40.doi: 10.1016/j. jksus. 2009. 12. 006 

[5] Mustafa, M.M. & Ghanim, I.N. (2018). Numerical solution of linear Volterra-Fredholm integral 
equations using quadrature methods. 

[6]  Molla, H.U. & Saha, G. (2020). Numerical approximations of Fredholm-Volterra integral equation of 
second kind using Galerkin and Collocation methods. Suan Sunandha Science and Technology 
Journal, 7(2), 15-22. 

[7]  Abdou, M.A., Soliman, A.A. & Abdel-Aty, M.A. (2020). On a discussion of Volterra-Fredholm 
integral equation with discontinuous kernel. Journal of the Egyptian Mathematical Society, 28, 1-10. 

[8]  Molla, H.U. & Saha, G. (2018). Numerical approximation of Fredholm integral equation (FIE) of 2nd 
kind using Galerkin and collocation methods. GANIT: Journal of Bangladesh Mathematical Society, 
38,11-25.doi:10.3329/ganit.v38i0.39782 

[9]  Lewis, P. E. & Ward, H. R. (1991). The finite element method: Principles and application. Addison-
Wesley Publishing Company. 

 
 
  



10 Asma Akter Akhi and Goutam Saha /  GANIT J. Bangladesh Math. Soc. 41.1 (2021) 1–14 

APPENDIX A:  

Table A1: Numerical results for Example 1 (n = 2) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.402747 0.872596 0.870121 1.014979 0.599279 
0.1 0.904837 1.139234 0.861446 0.886132 0.905866 0.805545 
0.2 0.818731 0.910140 0.828788 0.851282 0.813534 0.860804 
0.3 0.740818 0.716518 0.776997 0.783340 0.734651 0.814721 
0.4 0.670320 0.560129 0.710031 0.697982 0.666275 0.711115 
0.5 0.606531 0.443447 0.633432 0.608796 0.605857 0.587965 
0.6 0.548812 0.369653 0.554324 0.527277 0.551241 0.477405 
0.7 0.496585 0.342642 0.481415 0.462832 0.500662 0.405729 
0.8 0.449329 0.367015 0.424997 0.422777 0.452746 0.393385 
0.9 0.406569 0.448087 0.396944 0.412337 0.406515 0.454980 
1.0 0.367879 0.591881 0.410714 0.434648 0.361379 0.599279 

 
Table A2: Numerical results for Example 1 (n = 3) 

 
x EXACT BF CH CL FL LLE 

0.0 1.000000 1.151427 0.909564 0.983350 1.000283 0.958811 
0.1 0.904837 0.893436 0.892129 0.909014 0.904846 0.915063 
0.2 0.818731 0.763348 0.842693 0.824616 0.818468 0.832715 
0.3 0.740818 0.702516 0.769416 0.741811 0.740574 0.742461 
0.4 0.670320 0.667598 0.684387 0.666867 0.670334 0.661109 
0.5 0.606531 0.630116 0.601363 0.601975 0.606820 0.594997 
0.6 0.548812 0.576096 0.532601 0.546445 0.549162 0.543118 
0.7 0.496585 0.505819 0.484781 0.497807 0.496679 0.499986 
0.8 0.449329 0.433663 0.454034 0.452799 0.449009 0.458221 
0.9 0.406569 0.388805 0.420051 0.408261 0.406215 0.410863 
1.0 0.367879 0.411482 0.339298 0.361912 0.368884 0.353421 

 
Table A3: Numerical results for Example 1 (n = 4) 

 
x EXACT BF CH CL FL LLE 

0.0 1.000000 1.155063 0.929939 0.998042 0.999456 0.994885 
0.1 0.904837 0.863940 0.906318 0.905615 0.905061 0.906862 
0.2 0.818731 0.774149 0.842058 0.818743 0.818807 0.818722 
0.3 0.740818 0.742091 0.754639 0.740257 0.740667 0.739346 
0.4 0.670320 0.697897 0.665973 0.670017 0.670151 0.669564 
0.5 0.606531 0.625539 0.593669 0.606764 0.606519 0.607169 
0.6 0.548812 0.542236 0.542974 0.549244 0.548956 0.549918 
0.7 0.496585 0.476581 0.503573 0.496725 0.496724 0.496899 
0.8 0.449329 0.444874 0.456606 0.449053 0.449284 0.448609 
0.9 0.406569 0.425150 0.398469 0.406342 0.406405 0.406042 
1.0 0.367879 0.328439 0.389164 0.368410 0.368244 0.369117 
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Table A4: Numerical results for Example 1 (n = 5) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.152473 0.929920 0.997018 1.000333 0.994609 
0.1 0.904837 0.852263 0.906303 0.906036 0.904706 0.906984 
0.2 0.818731 0.802881 0.842055 0.818795 0.818717 0.818717 
0.3 0.740818 0.765297 0.756515 0.739939 0.740905 0.739239 
0.4 0.670320 0.686192 0.665995 0.669803 0.670383 0.669510 
0.5 0.606531 0.595780 0.593684 0.606879 0.606513 0.607225 
0.6 0.548812 0.532499 0.542967 0.549516 0.548746 0.550011 
0.7 0.496585 0.499803 0.503546 0.496832 0.496545 0.496924 
0.8 0.449329 0.463076 0.456593 0.448883 0.449357 0.448541 
0.9 0.406569 0.397390 0.398506 0.406191 0.406619 0.405995 
1.0 0.367879 0.399509 0.389068 0.368743 0.367772 0.369225 

 

Table A5: Approximate polynomial solutions for Example 1 (n = 5) 
 

Polynomials Approximate polynomial solutions (𝜑𝜑�(𝑥𝑥)) 

BF 
1.15247345− 5.7623672𝑥𝑥 + 38.190357𝑥𝑥2 − 123.676961𝑥𝑥3 + 191.28067𝑥𝑥4 − 136.574009𝑥𝑥5

+ 38.150331𝑥𝑥6 − 9.717654𝑥𝑥7 + 7.637876𝑥𝑥8 − 0.33114693𝑥𝑥9

+ 0.049938671𝑥𝑥10  
CH 0.92992− 2.4195𝑥𝑥2 + 5.8451𝑥𝑥4 − 6.9284𝑥𝑥6 + 2.9674𝑥𝑥8 − 0.0054445𝑥𝑥10 

CL 
0.99702− 0.89614𝑥𝑥 − 0.372667𝑥𝑥2 + 2.79001𝑥𝑥3 − 4.6447𝑥𝑥4 + 3.31052𝑥𝑥5 − 0.47132𝑥𝑥6

− 0.55406𝑥𝑥7 + 0.240349𝑥𝑥8 − 0.031513𝑥𝑥9 + 0.00126052𝑥𝑥10  

FL 
1.000333− 1.011737𝑥𝑥 + 0.60256𝑥𝑥2 − 0.550671𝑥𝑥3 + 0.800712𝑥𝑥4 − 0.890065𝑥𝑥5

+ 0.640786𝑥𝑥6 − 0.292145𝑥𝑥7 + 0.0767605𝑥𝑥8 − 0.00912658𝑥𝑥9

+ 0.000365063𝑥𝑥10  

LLE 
0.9946− 0.8062𝑥𝑥 − 1.1962𝑥𝑥2 + 5.9365𝑥𝑥3 − 10.692𝑥𝑥4 + 9.587𝑥𝑥5 − 4.0378𝑥𝑥6 + 0.55248𝑥𝑥7

+ 0.041717𝑥𝑥8 − 0.011685𝑥𝑥9 + 0.00046741𝑥𝑥10 
 

Table A6: Numerical results for Example 2 (n = 2) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.340495 1.123314 1.330865 0.960178 1.994119 
0.1 1.105171 1.160955 1.144839 1.153858 1.103909 1.387584 
0.2 1.221403 1.132489 1.208674 1.142888 1.236002 1.172719 
0.3 1.349859 1.218369 1.312602 1.250363 1.365524 1.228219 
0.4 1.491825 1.384966 1.452928 1.434292 1.500473 1.447048 
0.5 1.648721 1.601759 1.624478 1.658282 1.647782 1.736440 
0.6 1.822119 1.841333 1.820598 1.891538 1.813315 2.017904 
0.7 2.013753 2.079377 2.033160 2.108865 2.001874 2.227218 
0.8 2.225541 2.294685 2.252554 2.290668 2.217189 2.314432 
0.9 2.459603 2.469158 2.467693 2.422948 2.461928 2.243868 
1.0 2.718282 2.587802 2.666012 2.497308 2.737691 1.994119 
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Table A7: Numerical results for Example 2 (n = 3) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.287770 1.088912 1.041651 0.997498 1.106021 
0.1 1.105171 1.075753 1.116687 1.094703 1.105588 1.079326 
0.2 1.221403 1.113039 1.197124 1.207495 1.228030 1.187712 
0.3 1.349859 1.279609 1.322029 1.348566 1.350633 1.348632 
0.4 1.491825 1.491080 1.479356 1.501197 1.491285 1.517373 
0.5 1.648721 1.695569 1.655607 1.659813 1.647235 1.677731 
0.6 1.822119 1.871219 1.839203 1.826688 1.820821 1.833428 
0.7 2.013753 2.024405 2.024819 2.008925 2.013859 2.000284 
0.8 2.225541 2.188612 2.218677 2.215728 2.227315 2.199126 
0.9 2.459603 2.420016 2.444802 2.455963 2.460987 2.449448 
1.0 2.718282 2.817638 2.752245 2.736002 2.713251 2.763819 

 

Table A8: Numerical results for Example 2 (n = 4) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.250063 1.075603 1.005443 1.001539 1.014459 
0.1 1.105171 1.035707 1.107548 1.103017 1.104544 1.099588 
0.2 1.221403 1.150292 1.197907 1.221340 1.221217 1.221227 
0.3 1.349859 1.353454 1.332069 1.351411 1.350290 1.353777 
0.4 1.491825 1.534912 1.491309 1.492666 1.492259 1.493902 
0.5 1.648721 1.674947 1.659734 1.648026 1.648696 1.647018 
0.6 1.822119 1.806986 1.831007 1.820838 1.821687 1.819122 
0.7 2.013753 1.980388 2.011856 2.013361 2.013400 2.012971 
0.8 2.225541 2.221737 2.218509 2.226495 2.225741 2.227727 
0.9 2.459603 2.493157 2.461356 2.460435 2.460091 2.461194 
1.0 2.718282 2.646382 2.712265 2.715999 2.717108 2.713881 

 
Table A9: Numerical results for Example 2 (n = 5) 

 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.254249 1.091654 1.005527 1.001895 1.014482 
0.1 1.105171 1.019803 1.118548 1.102837 1.104430 1.099590 
0.2 1.221403 1.168899 1.196909 1.221612 1.221193 1.221206 
0.3 1.349859 1.370233 1.319937 1.351750 1.350369 1.353762 
0.4 1.491825 1.525867 1.476966 1.492646 1.492329 1.493911 
0.5 1.648721 1.650158 1.654892 1.647643 1.648683 1.647044 
0.6 1.822119 1.788651 1.840925 1.820464 1.821612 1.819141 
0.7 2.013753 1.972185 2.027304 2.013387 2.013346 2.012965 
0.8 2.225541 2.205479 2.218559 2.226918 2.225780 2.227700 
0.9 2.459603 2.492856 2.441719 2.460673 2.460170 2.461182 
1.0 2.718282 2.906693 2.759489 2.715178 2.716914 2.713927 
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Table A10: Approximate polynomial solutions for Example 2 (n = 5) 
 

Polynomials Approximate polynomial solutions (𝜑𝜑�(𝑥𝑥)) 

BF 
1.25424892− 6.2712446𝑥𝑥 + 53.3211044𝑥𝑥2 − 164.4280359𝑥𝑥3 + 260.311097𝑥𝑥4

− 224.740958𝑥𝑥5 + 116.9850364𝑥𝑥6 − 49.6143677𝑥𝑥7 + 19.0062071𝑥𝑥8

− 3.27973169𝑥𝑥9 + 0.36333659𝑥𝑥10  
CH 1.09165 + 2.70894𝑥𝑥2 − 1.95453𝑥𝑥4 + 0.367927𝑥𝑥6 + 0.641343𝑥𝑥8 − 0.095846𝑥𝑥10 

CL 
1.00552 + 0.79376𝑥𝑥 + 2.32544𝑥𝑥2 − 6.3448𝑥𝑥3 + 11.143𝑥𝑥4 − 9.2554𝑥𝑥5 + 3.25266𝑥𝑥6

− 0.050175𝑥𝑥7 − 0.182068𝑥𝑥8 + 0.0283702𝑥𝑥9 − 0.0011348𝑥𝑥10 

FL 
1.00182 + 0.94212𝑥𝑥 + 0.9369𝑥𝑥2 − 1.14966𝑥𝑥3 + 1.91422𝑥𝑥4 − 1.32656𝑥𝑥5 + 0.522955𝑥𝑥6

− 0.151293𝑥𝑥7 + 0.0293789𝑥𝑥8 − 0.00310813𝑥𝑥9 + 0.000124325𝑥𝑥10 

LLE 
1.014 + 0.4905𝑥𝑥 + 4.922𝑥𝑥2 − 15.74𝑥𝑥3 + 28.29𝑥𝑥4 − 26.0𝑥𝑥5 + 11.94𝑥𝑥6 − 2.361𝑥𝑥7 + 0.1566𝑥𝑥8

− 0.001385𝑥𝑥9 + 0.0000554𝑥𝑥10 
 

Table A11: Numerical results for Example 3 (n = 2) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.324201 1.115579 1.308356 0.962619 1.925268 
0.1 1.105171 1.149250 1.137576 1.140965 1.104778 1.326699 
0.2 1.221403 1.127303 1.202765 1.136971 1.235658 1.114158 
0.3 1.349859 1.220502 1.308749 1.248972 1.364328 1.168164 
0.4 1.491825 1.394063 1.451533 1.435142 1.498791 1.383298 
0.5 1.648721 1.616279 1.625519 1.659233 1.645981 1.668195 
0.6 1.822119 1.858518 1.823518 1.890572 1.811768 1.945545 
0.7 2.013753 2.095223 2.036734 2.104066 2.000953 2.152095 
0.8 2.225541 2.303911 2.254778 2.280195 2.217269 2.238650 
0.9 2.459603 2.465177 2.465661 2.405017 2.463385 2.170069 
1.0 2.718282 2.562688 2.655796 2.470168 2.740901 1.925268 

 
Table A12: Numerical results for Example 3 (n = 3) 

 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.278844 1.084872 1.039803 0.997773 1.101115 
0.1 1.105171 1.071526 1.113146 1.094629 1.105565 1.079046 
0.2 1.221403 1.115273 1.194925 1.208269 1.222673 1.189416 
0.3 1.349859 1.287276 1.321589 1.349423 1.350513 1.350301 
0.4 1.491825 1.501323 1.480482 1.501606 1.491237 1.517718 
0.5 1.648721 1.704772 1.657481 1.659529 1.647277 1.676244 
0.6 1.822119 1.876199 1.840591 1.825764 1.820935 1.830375 
0.7 2.013753 2.023732 2.024562 2.007707 2.014001 1.996647 
0.8 2.225541 2.184061 2.216542 2.214821 2.227411 2.196498 
0.9 2.459603 2.422127 2.442752 2.456176 2.460938 2.449893 
1.0 2.718282 2.831494 2.756182 2.738276 2.712925 2.769683 
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Table A13: Numerical results for Example 3 (n = 4) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.244519 1.067028 1.005244 1.001463 1.013360 
0.1 1.105171 1.034739 1.101384 1.103086 1.104569 1.099890 
0.2 1.221403 1.154437 1.197524 1.221416 1.221248 1.221631 
0.3 1.349859 1.359657 1.337214 1.351396 1.350291 1.353768 
0.4 1.491825 1.539598 1.497925 1.492578 1.492232 1.493522 
0.5 1.648721 1.676229 1.662302 1.647938 1.648659 1.646591 
0.6 1.822119 1.805699 1.826778 1.820819 1.821668 1.818975 
0.7 2.013753 1.979618 2.004689 2.013433 2.013414 2.013227 
0.8 2.225541 2.224443 2.217937 2.226605 2.225781 2.228179 
0.9 2.459603 2.497477 2.469875 2.460457 2.460113 2.461319 
1.0 2.718282 2.638158 2.690828 2.715751 2.717015 2.712973 

 

Table A14: Numerical results for Example 3 (n = 5) 
 

x EXACT BF CH CL FL LLE 
0.0 1.000000 1.217698 1.055374 1.000455 0.999877 1.001456 
0.1 1.105171 1.027799 1.095602 1.105068 1.105212 1.104824 
0.2 1.221403 1.204613 1.203637 1.221535 1.221371 1.221828 
0.3 1.349859 1.388424 1.349121 1.349853 1.349835 1.349872 
0.4 1.491825 1.511544 1.502509 1.491715 1.491848 1.491468 
0.5 1.648721 1.628954 1.653403 1.648718 1.648752 1.648663 
0.6 1.822119 1.800016 1.815297 1.822216 1.822114 1.822420 
0.7 2.013753 2.025208 2.008863 2.013766 2.013719 2.013865 
0.8 2.225541 2.248195 2.232277 2.225451 2.225534 2.225283 
0.9 2.459603 2.439381 2.457459 2.459648 2.459643 2.459625 
1.0 2.718282 2.782557 2.738509 2.718089 2.718188 2.718006 

 

Table A15: Approximate polynomial solutions for Example 3 (n = 5) 
 

Polynomials Approximate polynomial solutions (𝜑𝜑�(𝑥𝑥)) 

BF 
1.217698255− 6.08849127𝑥𝑥 + 58.792735𝑥𝑥2 − 199.319805𝑥𝑥3 + 329.217429𝑥𝑥4

− 268.840521𝑥𝑥5 + 113.8964514𝑥𝑥6 − 47.3745451𝑥𝑥7 + 23.9235674𝑥𝑥8

− 2.98978067𝑥𝑥9 + 0.347819639𝑥𝑥10 
CH 1.0553736 + 4.1374469𝑥𝑥2 − 11.703857𝑥𝑥4 + 24.242969𝑥𝑥6 − 23.550553𝑥𝑥8 + 8.557129𝑥𝑥10  

CL 
1.000454 + 0.974295𝑥𝑥 + 0.857404𝑥𝑥2 − 1.929012𝑥𝑥3 + 6.3477𝑥𝑥4 − 10.55566𝑥𝑥5

+ 10.04022𝑥𝑥6 − 5.23671𝑥𝑥7 + 1.373203𝑥𝑥8 − 0.1602158𝑥𝑥9

+ 0.00640863𝑥𝑥10 

FL 
0.999876 + 1.006006𝑥𝑥 + 0.42883𝑥𝑥2 + 0.52035𝑥𝑥3 − 0.861173𝑥𝑥4 + 1.306827𝑥𝑥5

− 1.093587𝑥𝑥6 + 0.542844𝑥𝑥7 − 0.1490253𝑥𝑥8 + 0.01795593𝑥𝑥9

− 0.000718237𝑥𝑥10  

LLE 
1.001456 + 0.918849𝑥𝑥 + 1.61144𝑥𝑥2 − 6.25213𝑥𝑥3 + 19.0753𝑥𝑥4 − 31.4524𝑥𝑥5 + 29.5633𝑥𝑥6

− 15.3024𝑥𝑥7 + 4.00281𝑥𝑥8 − 0.466882𝑥𝑥9 + 0.0186753𝑥𝑥10 
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ABSTRACT 

It is not popularly realized that the factorization of a general quadratic expression basically requires solution 

to a hyperbola and a line. This fact is conspicuously pointed out and a few solutions to the problem are 

demonstrated that are scattered in the literature.  In the high school level, the coefficients of a quadratic 

expression are mostly integers, and factorization is performed by the popular method of decomposition of the 

middle term. In this expository note, we have presented it in a simpler way that shows both insight and 

reasoning into the problem. Some other methods, namely, Linear Method, Average Method and Difference of 

two Squares Method are also discussed. Depending on the background, a reader may prefer a particular method 

to the others. The expository nature and artistry in presentation of the paper are expected to make the learning 

of the topic amusing and instructive.  
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1. Introduction 

Factorization of a quadratic expression or solving a quadratic equation pops up often in physics and 

engineering for calculating trajectories, and even in sports. If, while watching the Super Bowl, you want to 

estimate how far a pass thrown by a football quarterback travelled through the air, you solve a quadratic 

equation. A popular example of a quadratic equation appears at minimizing cost and maximizing profit in 

business. 

The quadratic expression or its solution has a long history stretching as far back as the Old Babylonian Period 

around 2000–1600 B.C. See, for example, [1] and [2]. Over four millennia, many mathematicians have 

contributed to the topic.  In particular, several books have surveyed the topic of the quadratic formula, such as 

Chapter 2 of [3], and mathematical history books such as [4], [5] and [1]. For a brief description see [6] and 

the references therein. 

 

https://doi.org/10.3329/ganit.v41i1.55023
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The general quadratic expression 
2( )q x ax bx c    with leading coefficient 0a   may be termed as a 

polynomial of degree 2 in the variable x  or briefly a quadratic trinomial. The quantities ,a b and c are 

coefficients of the quadratic expression.  The quadratic expression with leading coefficient 1,a  i.e., 

2x bx c  is called a monic quadratic expression. Factorization of a quadratic expression appears at algebra 

at high school level and it is usually done by decomposing the middle term. But broad spectrum of students 

still feel a significant leap of insight.  While factorization of the monic quadratic expression is relatively easier,  

its connection with the general quadratic expression is not usually spelled out to the students during 

factorization. See for example [7].  

 

It is easy to check that  
2( )( ) ( )y j y k y j k y jk      which is a monic quadratic expression as the 

coefficient of 
2y is 1.  We can write a standard monic quadratic expression as 

2 .y by m    Then its 

factorization is a historic problem of determining j and k given the sum j k b  and the product .jk m  

While there are many solutions to the problem, the most popular is the decomposition of the middle term, i.e. 

given ,b  we try to find j and k such that .jk m  In case j and k are numbers, then j k b  and 

jk m are a line and a hyperbola whose precise graphical solution requires a computer.  At the middle school 

level, j and k are usually integers, then j k b  and jk m are a dotted line and a dotted hyperbola.  

 

It is not popularly realized that the factorization of a general quadratic expression basically requires solution 

to a line and a hyperbola. This fact is pointed out clearly for students of secondary or tertiary education and 

written  at that level of simplicity.  It is amazing that in some cases when the coefficients are integers, the 

dotted line and dotted hyperbola have a simple solution.  

 

The paper is organized as follows. Section 2 shows the connection between a general quadratic expression and 

a monic quadratic expression while factorization. The solution to find two numbers given their sum and 

product, was known to the Babylonians. See, for example, [1], [3], [4], [8] and [18]. The method of  Additive 

Decomposition of the Middle Term b is explained in Section 3 in an instructive way when the coefficients are 

integers. It is renamed as Factoring Method.  

 

 

Two other methods namely, Linear Method and Average Method are also discussed in Sections 4 and 5 

respectively. The average method is due to Babylonians but recently popularized by [6,9] providing a clear 

insight with much simplicity. The method of completing the square by al-Khawarizmi is discussed in Section 

6 by characterizing it by the derivative of a quadratic expression and discriminant of the quadratic equation.  

Because of its importance, many authors have published on the issue with alternative representations. See for 

example, [10,11,12,13,14,15,16,17].  
 

2. General and Monic Quadratic Expressions 

 

The connection between the general quadratic expression and monic quadratic expression required during 

factorization is spelled out well in this section. 

 

Theorem 2.1 Let 
2( ) ,q x ax bx c   0,a  0,c                     

(2.1) 

be the quadratic expression. Also let the monic quadratic from 
2y by m   be factorized as 

2 ( )( ) ( ; ,  ),y by m y j y k Q y j k                      

(2.2) 

so that j k b                     

(2.3) 

and .jk m                      
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(2.4) 

 

Then ( )q x can be factorized by the following equivalent ways: 

a. 
1

( )  ( )( ),q x ax j ax k
a

                                               

(2.5a) 

b. 
1

( )  ( ;  , )  ;  ,  ;  , ,
j k j k

q x Q ax j k a Q x Q ax
a a a a a

  
     

   
            

(2.5b) 

if .jk ac                     

(2.6) 

 

Proof.  It is easy to check that 
2 2( ) ,a q x a x abx ac    can be transformed to 

2y by ac  where  

.y ax  By using (2.2), (2.3) and (2.4), we have 2.5(a). The part 2.5(b) follows from (2.5a).  

 

It seems part 2.5(a) is the simplest. Note that j and k can be found by factorizing 
2y by ac  by (2.2) 

where ,a b  and c  are available from the given quadratic expression ( ).q x  Then plugging them in (2.5a), we 

can get the factorized form of ( ).q x  Without any loss of generality, we assume that 0.a   In case 0,a   

we may factorize 
2q ax bx c      so that ,a the coefficient of 

2 ,x is non-negative. 

The solution to find numbers given their sum and product, was known to the Babylonians. See for example, 

[1,3,4,8,18]. 

 

 

 

 

3. Factoring Method ( j and k are integers) 

 

In Theorem 2.1, we have noticed that for factorization of a monic quadratic expression, 
2 ,y by m  we 

need ( , )j k such that j k b  and .jk m  Usually students stumble to find possible solution to ( , )j k

such that ,j k b   and then look for ( , )j k where jk m by trial and error, and the method is well 

known as Decomposition of the Middle Term. Since the set {( , ) : }j k j k b   involves many solutions 

than that in {( , ) : },j k jk m  we recommend to decompose jk m  first and look for ( , )j k  such that 

the dotted line j k b   is satisfied. In this section, we demonstrate a method that factorizes monic quadratic 

expression through a tabular representation of factoring | | | |m jk  first and then .m jk   Since ,j k b 

the larger one of ( , )j k in absolute value has the same sign as that of .b  The method is renamed as Factoring 

Method for simplicity.   

 

Case 1: Let ( , )m b be in the first quadrant of m-b axes of co-ordinates, i.e., 0m  and 0. b  Obviously, 

0m jk  implies that j and k are of the same sign. Then  by virtue of 0,b j k    we have 0j   

and 0k  (first quadrant of j-k axes of co-ordinates)  

 

Case 2: Let ( , )m b be in the second quadrant of m-b axes of co-ordinates, i.e., 0m  and 0.b    

Obviously, 0m jk  implies that j and k are of the opposite signs.  Then by virtue of 0,b j k    



18                                                                Anwar H. Joarder /  GANIT J. Bangladesh Math. Soc. 41.1 (2021) 15–25 

one possibility is to have 0,k j    i.e., 0j   and 0k  ( second quadrant of j-k axes of co-ordinates). 

Alternatively, by virtue of 0,b j k    we have 0,j k    i.e. 0j   and 0k  ( fourth quadrant of 

j-k axes of co-ordinates). 

 

Case 3: Let ( , )m b be in the third quadrant of m-b axes of co-ordinates , i.e., 0m  and 0.b   Obviously, 

0m jk  implies that j and k are of the opposite signs. Then by virtue of 0,b j k    one possibility 

is to have 0 ,j k    i.e., 0j   and 0k  (fourth quadrant j-k axes of co-ordinates).  Alternatively by 

virtue of  0,b j k    we have 0 ,k j    i.e., 0j   and 0k  (second quadrant j-k axes of co-

ordinates).   

 

Case 4: Let ( , )m b be in the fourth quadrant of m-b axes of co-ordinates, i.e., 0m  and 0.b   Obviously, 

0m jk  implies that j and k are of the same sign. Then by virtue of 0,b j k    and noting that the 

sign of b is the same as that of j and ,k  we have 0j   and 0k  (third quadrant of j-k axes of co-

ordinates). 

 

The above rules may be summarized to two simple rules: 

 

Rule I: If 0,m   then both the signs of ( , )j k are the same as that of .b  

Rule II: If 0,m   then the signs of ( , )j k are different; the larger one of ( , )j k in absolute value has the  

 

same sign as that of .b j k   

 

Note that 1,  2,  3Q Q Q  and 4Q in Table 3.1 denote axes of coordinates of j-k.   Figure 3.1a contains the 

same information presented in a different style. 

 

           Table 3.1: Sign Table for ( , )j k  

 

( , )m b

 

( , )j k  Comment on Signs of ( , )j k  

( , ) 

 

,1: ( )Q    The signs are the same as that of b  

( , ) 

 

2: ( , ),  0kQ j    

/ 4 : ( , ),  0*jQ k   

 

 

The signs are different. The larger one in 

absolute value has the same sign as that of b  

( , ) 

 

4: ( , ),  0 j kQ      

/ Q2: ( , ),  0< *jk     

( , ) 

 

3:  ( , )Q    The signs are the same as that of b  

 

         *We have not considered the asterisk cases in the Factoring Method. 
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Keep dividing | | | |m jk by possible divisors, say, 1,2,3,...,j   and then repeating it for m jk so that 

it is completely divisible. Stop at | | | | .j k  Then the solution ( , )j k is obvious from their absolute values 

intuitively or by the above rules. An example is provided below to illustrate the idea. 

 

Example 3.1 Factorize 
2( ) 8 2 15.q x x x     

Solution: It is easy to check that 
21

( ) (8 8 2 8 15 8)
8

q x x x       can be transformed to  

 

21
( 2 15 8)

8
y y    where 8 .y x  We will factorize 

2 2 15 8y y    first. By comparing it with  

2 ,y by m  we have 8( 15) 120m jk ac       and 2.b    Obviously, 0m jk  implies 

that j and k are of the opposite signs. Then by virtue of  0,b j k    one possibility is to have  

0 ,j k    i.e., 0j   and 0.k   Another possibility not used here is 0 ,k j    i.e., 0j  and 

0.k   You may check Case 3 and Rule II at the beginning of this section for general logic or Table 3.1 or 

Figure 3.1a. 

 

Factoring | | 120,jk   and  then 120jk    by the above arguments or by eye inspection, we have the 

following table: 

 

   Table 3.2: Factoring Table  

 

j  1 2 3 4 5 6 8 10 

k  -120 -60 -40 -30 -24 -20 -15 -12 

 

To satisfy 2,j k     we have 10, 12j k    so that 
2 2 15 8 ( 10)( 12)y y y y      and 

finally by  (2.5a), we have  

1
( ) (8 10)(8 12) (4 5)(2 3).

8
q x x x x x        

 

4.  Linear Method 

 

In Section 2, we have mentioned that the process of factorization requires to solve a line j k b  and a 

hyperbola .jk m  The Babylonian tablets clearly indicate that they had realized 2j k b  and jk m as 

the perimeter and the area of a rectangle.  These two equations are equivalent to two lines: k j b  and 

k j t   where t is defined in equation (4.1). Thus the problem of factorization boils down to equilibrium 
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point of two lines. Algebraically, it means, determining two numbers given their sum and difference. The 

method may be named as Linear Equilibrium Method or simply Linear Method. 

 

The monic quadratic expression is given by 
2 ,y by m   (say). From Section 2, we have  k j b  and

.jk m  Assuming ,j k  by virtue of the identity
2 2( ) ( ) 4 ,k j k j jk     another line k j t 

can be determined where  

 
2 2 4 .t b m                       

(4.1) 

 

The solution to the lines k j b  and k j t   is  

( ) / 2k b t  and ( ) / 2.j b t                   

(4.2) 

 

 

 

To factorize 
2( ) 8 2 15q x x x    of Example 3.1, we have 2k j    and 120 0.jk     Assuming 

0 ,k j    i.e., 0k   and 0,j   or, 0k   and 0,j   it follows that ( ) 0.k j    Then 

2 2( ) ( ) 4 484k j k j jk     so that 22.k j   Solving 2( )k j b    and 22( ),k j t  

by equation (4.2),  we have [( 2) 22] / 2 10k       and [( 2) (22)] / 2 12.j       Alternatively by 

assuming 0 ,j k    i.e., 0j   and 0,k   we have 12k     and 10.j   Then the factorization is 

obvious by (2.5a). 

 

5. Average Method 

 

As mentioned earlier, Babylonians were interested in finding the dimensions j  and k of a rectangle with a 

given area m  and a given perimeter 2b.  They solved it by a method what may be called the Average Method 

and is recently popularized  by [6,9]. In general, let the average of the two numbers j  and k be / 2.b  

Assume that the smaller number ( )j is r units below the average and the larger one ( )k j  is r units above 

the average. That is, they are of the form: ( / 2)j b r   and ( / 2) ,j b r   where ( 0)r   is yet to be 

determined. Then by  equation (2.4) and (2.6),  we have ,jk m ac  and hence the following average 

equation:  

 

,
2 2

b b
r r ac

  
    

  
                    

(5.1) or, 
2 2( / 2) ,r b ac                     

(5.2) 

or,  
2( / 2) ,r b ac                      

(5.3) 

where 
2 4 .b ac

 
 

The beauty of this method is that r has a natural meaning. Moreover since ,a b and c are known, r is easily 

determined. Also in Section 6, this method shows a new meaning of discriminant of a quadratic equation.  

Algebraically the Linear Method and the Average Method  are equivalent but the clarity of natural meaning 

of r  in the Average Method compared to t  (see equation 4.2) in the Linear Method deserves appreciation.  

 

To factorize 
2( ) 8 2 15q x x x    of Example 3.1, we see  the average of j and k  is 2 / 2 1,    and 
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they are of the form 1j r    and 1k r   so that by the average equation in (5.1), we have

( 1 )( 1 ) 120,r r ac       or,  11.r   Hence they are  1 12j r      and 1 10.k r     

Then the factorization is obvious by equation (2.5a).  

 

Note that it follows from (5.2) that   

22 4r b ac k j                       

(5.4) 

Hence one may save time during factorization by utilizing the equation
22 4 .r b ac   In case j k b 

 
 

is not an even number, it would be easier to assume average is / 2b B so that the average equation (5.1) 

would be ( )( ) .B r B r ac    

 

6. Difference of Squares (DS) Method 

 

In the year 825, about 2500 years after the Babylonian tablets were created, a general method similar to today’s 

Quadratic Formula was authored by the Arab mathematician Muhammad ibn Musa al-Khwarizmi in a book 

titled Hisab al-jabr w’al-muqabala.  His technique was completing the square and  more general than those 

of the Babylonians. The word “al-jabr” in the title of his book led to our modern word “algebra”.  The  word 

“algorithm” comes from al-Khwarizmi’s name.The authors in [19,20,21]  explore strategies for teaching the 

method of completing the square using a geometrical or conceptual approach. The method is characterized 

here in terms of the derivative of a quadratic form and the discriminant of a quadratic equation.  

 

Theorem 6.1 Let 
2( ) ,  0q x ax bx c a    be a quadratic expression, ( ) 2q x ax b   be its derivative 

and 
2 4d b ac   be the discriminant of the equation  ( ) 0.q x  Then we have 

  1
( ) ( ) ( ) .

4
q x q x d q x d

a
          

(6.1)  

Proof.  Multiplying 
2( )q x ax bx c   by 4 ,a  we have 

2 24  ( ) 4 4 4 .a q x a x abx ac    It can be  

expressed as    
222 24  ( ) (2 ) ( 4 ) ( )a q x ax b b ac q x d       which simplifies to (6.1).  

 

The above is equivalent to the popular factorization by DS (Difference of Squares). Note that by (5.4), we 

have  

 

2 .d r                      

(6.2) 

 

It exhibits an amazing connection between r  and the discriminant d which is implicit in [6].  

 

Example 6.1 Factorize 
2( ) 7 6 13.q x x x    

Solution: Since 
27,  6,  13,  4 400,a b c d b ac        by using (6.1), we have  

2 21
( ) [(2 7 6) 20 ] ( 1)(7 13).

4 7
q x x x x      


 

 

Corollary 6.1 Let 
2( ) ,  0q x ax bx c a    be a quadratic expression, 2s ax b   and 2r  be defined 

in the average equation in (5.1) or (5.4). Then we have the following: 
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1
( ) ( 2 )( 2 ).

4
q x s r s r

a
                     

(6.3) 

The equation (6.3) can also be written as   
1

( ) ( / 2) ( / 2) .q x s r s r
a

    

 

 

An Algorithm for Factorization 

 

An algorithm for factorization of a quadratic expression is discussed below with Example 6.1 in mind. It is 

suitable for any student not having exposed to derivative of a quadratic expression or discriminant of the 

quadratic equation. 

 

STEP 1: Determining s  

 

Determine the leading coefficient ,a  the linear coefficient ,b  the constant term c of the quadratic function

2( ) ,  0q x ax bx c a     and prepare the following table: 

 

     Table 6.1: Determination of s  

 

7a   6b    13c    

2x  1 0 

  

Then multiplying column wise and adding, we have 2 14 6.s ax b x     Note that the second line of the 

table is always the same for any quadratic expression ( ).q x  

 

STEP 2: Determining r  

 

Since 6b    and 7( 13) 91,ac     from the average equation    ( / 2) ( / 2)b r b r ac   in 

(5.1), we have ( 3 )( 3 ) 91,r r       or, 10.r   

 

STEP 3: Factorized Form 

 

From (6.3), we have  

1 1
( ) ( 2 )( 2 ) (14 6 20)(14 6 20),

4 4 7
q x s r s r x x

a
       


 

( ) ( 1)(7 13).q x x x    

 

Corollary 6.2 Let 
2( ) ,  0q x ax bx c a    be a quadratic expression, 2s ax b   and 2r  be the 

defined in the average equation in (5.1) or (5.4). Then the solution to ( ) 0q x   can be determined by  

2 .s r                               

(6.4) 

 

To solve 
27 6 13 0x x    (see Example 6.1),  we have 14 6s x   and 2 20,r  so that

14 6 20x   and finally we have 1,x    or, 13/ 7.x   
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7. General Quadratic Equation 

 

We mentioned in the introduction that the literature is extremely rich in solving a quadratic equation. Here we 

refer to [22] who has discussed a less known result of the roots of quadratic equation with amazing geometric  

meaning.  See also two recent papers [23,24]. The following theorem provides a solution to the general 

quadratic equation in terms of  the coefficients ,a b  and .r  

 

 Theorem 7.1 Let 
2 0,ax bx c   0a  be the quadratic equation. Then the roots of the equation are  

1

1
( / 2 ),x b r

a
    or, 2

1
( / 2 ),x b r

a
         

(7.1)  

where r can be obtained by the average equation in (5.1) or (5.4).     

        

Proof. The solution to the general quadratic equation 
2 0,  ax bx c   with 0a  follows from equation 

(2.5a) as 
1 / ,x j a   or, 

2 /x k a  so that the sum and the product of the roots are  

1 2 ( ) /x x j k a     and 
2

1 2 /x x jk a respectively. By (2.3) and (2.6), we have j k b  and 

jk ac so that 
1 2 /x x b a    and 

1 2 / .x x c a   Assuming 1 2 ,x x  by virtue  of the average equation 

in (5.1) or (5.4), and the identity
2 2

2 1 2 1 2 1( ) ( ) 4 ,x x x x x x     or, 
2 2 2

2 1( ) ( 4 ) / ,x x b ac a   we 

have 
2 1 2 / .x x r a   Then by  (4.2), it follows that the solution to the general quadratic equation is given 

by (7.1). 

 

Note that / 2b and 2r are the average and distance of the roots of 
2 0.x bx ac     

 

To solve 
27 6 13 0x x    (see Example 6.1), we have 7, 6, 13a b c      so that  

22 4 20r b ac    and hence by equation (7.1),  the roots are 1,x    or, 13/ 7.x   

 

8. Conclusion 

 

We have discussed, identified and named a few methods of factorization of a quadratic trinomial that have 

been developed over four millennia for making learning and teaching more effective. The rectangular method 

of the Babylonians is equivalent to solving the equilibrium point of a hyperbola and a line as mentioned in 

Section 1, and  Average Method in Section 5. We recommend using the Factoring Method discussed in Section 

3 for high school students as it tries to inculcate the reasoning of the problem. Readers motivated by algebra 

may like the Linear Method in Section 4 and the Average Method in Section 5. The method by  

al-Khwarizmi known as Difference of Squares is characterized in Section 6 by the derivative of a quadratic 

expression and the discriminant of the quadratic equation. Readers motivated by calculus may appreciate it 

though it has a mnemonic value for every reader. The choice of the method would certainly depend on the 

background of the reader. 
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ABSTRACT

In this work, we discuss some very simple and extremely efficient lattice models, namely, Binomial tree model
(BTM) and Trinomial tree model (TTM) for valuing some types of exotic barrier options in details. For both
these models, we consider the concept of random walks in the simulation of the path which is followed by the
underlying stock price. Our main objective is to estimate the value of barrier options by using BTM and TTM
for different time steps and compare these with the exact values obtained by the benchmark Black-Scholes model
(BSM). Moreover, we analyze the convergence of these lattice models for these exotic options. All the results
have been shown numerically as well as graphically.
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1 Introduction

In the last few decades, derivatives such as options became quite important part in the financial market. In
otherwords, pricing options has become one of the vital phenomenons in finantial mathematics. Note that,
trading options begun in the Chicago Board Options Exchange (CBOE) in 1973 and after that numerous other
exchanges started trading options all around the world [1]. In 1973, Fischer Black and Myron Scholes estab-
lished the first thoroughly acceptable model for pricing option [2]. After that Robert C. Merton expannded
their version in various significant ways in the same year [3].

The binomial lattice model to approximate option premium came out of a discussion between W.F. Sharpe and
M. Rubinstein at a conference. Their proposed model consists of the principle that, if an economy with three
securities can only obtain two future states, one such security will be redundant. This inspection engendered
to a two-state model. This was the birth of the binomial tree model (BTM) introduced first by J.C. Cox, S.A.
Ross and M. Rubinstein in 1979 [5]. Then it became a very popular and useful for pricing options due to its
simplicity.

On the other hand, Trinomial tree model (TTM) was developed by Boyle [4] and then it was modified by

∗Sadia Anjum Jumana. E-mail address: sadiajumana@gmail.com
†A B M Shahadat Hossain. E-mail address: abmsh@du.ac.bd
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Kamrad and Ritchen [14]. In TTM there exist three variation states for the underlying asset price at a specific
time interval namely, up, down, and remain same. This concept is comparatively more practical than the BTM
and it provides not only more accurate results but also faster.

Exotic options are established to fulfil the particular needs of the investors who are using the instruments to
control financial risk. Inspite of referring exotic options as a class of options, they are rather considered as
options with more convoluted properties than ordinary put and call options. Barrier options are most likely to
be the oldest of all exotic options and have been traded in the US market ever since 1967 [7].

Pricing barrier options using lattice procedures (BTM and TTM) can be quite tricky. Although using a
large number of time steps can generate precise outcomes for the standard options, the similar outcome might
not occur in valuing barrier options. The problem arises in locating the barrier with corresponding adjacent
branches of nodes in the lattice. In case of the barrier locates between the branches of the lattice, significant
amount of errors might occur. We have found few papers about pricing barriers in the literature; Peter H.
Ritchken discussed trinomial procedure for pricing and hedging most types of exotic barriers [15, 16]. On the
other hand, lattice procedures have been considered by many researchers to price various options as they are
easy to understand and very efficient [12–14].

The paper is structured as follows. In Section 2, we give some definitions regarding the options that we have
worked on this paper along with their payoff diagr ams. Then we present a significant relationship between call
and put option known as Put-Call Parity. After that, we briefly discuss three diffrent option pricing formulas
namely, the BSM, BTM and TTM in section 3. In section 4, we provide some important numerical as well as
graphical results about barrier option pricing using these models. Finally, we conclude how BTM and TTM
fit against real market data in comparison with the BSM for pricing barriers in section 5.

2 Preleminaries

2.1 Some Definitions

Definition 1. (Option) Option can be defined as a contract between two parties which provides the buyer
(owner) of the option the right (but not an obligation) to buy or sell the underlying asset for the settled cost
(strike price) on or before expiring time (maturity time) of the contract [1].

There exist two fundamental types of options:

• Call option

• Put option

Definition 2. (Call Option) A Call Option provides the holder (buyer) the right (but not the liability) to
purchase the underlying asset by a fixed date for a fixed price.

Definition 3. (Put Option) A Put Option provides the holder the right (but not the liability) to sell the
underlying asset by a fixed date for a fixed price.

Definition 4. (European Option) The type of option that provides the holder (buyer) of the option the right
to implement the option only at the expiry date, is called European Option.

Definition 5. (American Option) An American option, in comparison with the European option, can be
implementd at any time before the expiry date.

2.2 Payoff Diagrams

In the following table we will discuss the payoff of the call (Long position) and the put (Long position) option
[1].
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Table 2.1: Payoff of European call and put Options

Option Payoff Function Payoff Diagram

Call (Sτ −X)+ =

{
Sτ −X Sτ ≥ X
0 Sτ < X

Put (X − Sτ )+ =

{
X − Sτ Sτ ≤ X
0 Sτ > X

2.3 Barrier Options

Barrier options are regarded as one of the most fundamental kinds of path dependent exotic options. The
exercise of the option depends on the underlying asset price crossing a definite barrier. Since the payoff is
dependent on the path travelled by the asset price, it is called path dependent. However, the dependencey of
the path is considered to be weak, since the only feature accounted is whether the barrier B has been activated
or not [6]. These options are attractive as they are comperatively less costly than that of the corresponding
standard options.

Definition 6. (Barrier Option) The option for which the payoff depends on whether the price of the under-
lying asset hits a specific level during a specific time period, is called Barrier option [1].

2.4 Types of Barrier Options

A barrier can be hit from above or from below. Depending on this characteristic a barrier option can be classified
into two types [7].

1. Knock-out Barrier Option: This type of Barrier option begins it’s life as a typical call or put option,
but it becomes invalid if the spot price ever hits a specific predetermined knock-out barrier, even before
the expiry date.
Furthermore, depending on the position of the barrier with respect to the initial value of the underlying
asset, the Knock-out barrier option can be classified in to two options.

• Down-and-out: The option which comes to an end when the underlying asset price diminishes to
a predetermined level.

• Up-and-out: The option which comes to an end when the underlying asset price rises to a prede-
termined level.

2. Knock-in Barrier Option: This type of Barrier option begins its life inactive, and only becomes active
when the underlying stock price hits the knock-in barrier, then it is regarded as a typical call or put
option.
The Knock-in barrier option can also be classified in to two options.
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• Down-and-in: The option which becomes active when the underlying asset price decreases to a
predetermined level.

• Up-and-in: The option which becomes active when the underlying asset price rises to a predeter-
mined level.

In this paper we will only work with the Down-and-Out Barrier Call Option and Down-and-Out Barrier
Put Option ,whose payoff functions and graphs are given below [8],

• Down-and-Out Barrier Call

(Sτ −X)+
1{ min

0≤t≤τ
St > B} =

 Sτ −X if min
0≤t≤τ

St > X

0 if min
0≤t≤τ

St ≤ X

Remark 7. Here, 1 is the indicator function of a set (which set, is ususally specified as an index under
the 1) - a function that is equal to 1 if the argument belongs to the set, and 0 if it doesn’t.

Figure 2.1: Payoff diagram of Down-and-Out Barrier Call Option

• Down-and-Out Barrier Put

(X − Sτ )+
1{ min

0≤t≤τ
St > B} =

 X − Sτ if min
0≤t≤τ

St > X

0 if min
0≤t≤τ

St ≤ X
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Figure 2.2: Payoff diagram of Down-and-Out Barrier Put Option

2.5 Put-Call Parity

The principle which explains the relation between the value of European call option (Ct) and European put
option (Pt) with the same underlying asset (St), expiry date ( τ), and strike price (X), is known as put-call
parity [1]. Mathematically it is given by

Pt + St = Ct +Xe−r(τ−t) (2.1)

This relation states that the simultaneous holding of a long European call along with a short European put of
the same class will provide the identical result as holding one forward contract on the same underlying asset,
with the same expiry, and a forward price same as the strike price of the option. In case of the prices of the call
and put options conflict such that this relationship refrain holding, there exists an arbitrage opportunity. i.e.
sophisticated traders get the opprtunity to receive a risk-free profit [9].

2.6 In-out Parity

In-out parity can be interpreted as the representation of the put-call parity for barrier option. The main concept
here is almost identical as in put-call parity (2.1). It states that, if the value of the ”in” option is added with
the value of the ”out” option, then it results in the value of the European option (for both call and put)[17].

C = Cin + Cout (2.2)

P = Pin + Pout (2.3)

3 Methodology

In this section, we will discuss the BSM, BTM and TTM option pricing models briefly that overviews the
needs of this works. For details, readers are reffered [1].

3.1 Notations

Now we present some notations that are utilized in this paper as follows:
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t : Any time r : Risk-free interest rate

τ : Expiry date σ : Volatility

St : Stock price at any time, t u : Up movement

Sτ : Stock price at maturity, τ d : Down movement

f : General option price pu : Probability to move up

C0 : Call option price pd : Probability to move down

P0 : Put option price N : Number of steps

X : Strike price B : Barrier of the stock price

µ : Drift

3.2 The Black-Scholes Model

This model was presented by Fisher Black, Myron Sholes and Merton at the beginning of the 1970s for pricing
European stock options. Since then it’s been used as the standard model for pricing European options.[1]

Proposition 8. Let, S be the asset price, which follows GBM process

dSt
St

= µdt+ σdWt (Wt is Wiener process) (3.1)

and f be the value of the option, that follows the following PDE

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
+ rS

∂f

∂S
− rf = 0 (3.2)

Then the value of the call option is given by

C(S, t) = SΦ(δ1)−Xe−r(τ−t)Φ(δ2) (3.3)

where

δ1 =
ln(S/X) + (r + 1

2σ
2)(τ − t)

σ
√

(τ − t)
(3.4)

δ2 =
ln(S/X) + (r − 1

2σ
2)(τ − t)

σ
√

(τ − t)
= δ1 − σ

√
(τ − t) (3.5)

The parameter Φ(.) is called the cumulative probability distribution function corresponding to any standard
normal random variable z,

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2x

2

dx (3.6)

Remark 9. After obtaining the formula for valuing a European call option, we can apply the put–call parity
(2.1) for establishing the value P (S, t) of a European put option which is

P (S, t) = Xe−r(τ−t)Φ(−δ2)− SΦ(−δ1) (3.7)

Remark 10. The first accepted scientific formula to price a Down-and-Out Barrier Call option was suggested
by Merton [3] and shortly after Reiner and Rubinstein came up with the formulas for pricing all four kinds of
Barrier call and put options [10]. From their inspection it was found that, the value of a barrier option depends
on the parameters of the benchmark Black-Scholes model, along with the barrier level, B. According to them the
value of a Down-and-In Barrier Call option is stated as below

Cdown−in(S, t) =

(
S

B

)1− 2r
σ2

− C
(
B2

S
, τ − t

)
(3.8)

where, C
(
B2

S , τ − t
)

is determined making use of the equation (3.3).
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Having obtained that, the value of a Down-and-Out Call option can easily be calculated by utilizing the in-out
parity (2.2), for B < X, B ≤ S and 0 ≤ t ≤ τ .

C(S, t) = Cdown−in(S, t) + Cdown−out(S, t)

Cdown−out(S, t) = C(s, t)− Cdown−in(S, t)

= C(s, t)−
(
S

B

)1− 2r
σ2

− C
(
B2

S
, τ − t

)
(3.9)

According to [11] the values of th barrier option can be obtained by using the formulas mentioned below.
Down-and-Out Call:

1. X > B:
Cdown−out(S, t) = S(Φ(δ1)− β(1− Φ(δ8)))−Xe−r(τ−t)(Φ(δ2)− α(1− Φ(δ7))).

2. X < B:
Cdown−out(S, t) = S(Φ(δ3)− β(1− Φ(δ6)))−Xe−r(τ−t)(Φ(δ4)− α(1− Φ(δ5))).

Down-and-Out Put:

1. X > B:

Pdown−out(S, t) = −S(Φ(δ3)−Φ(δ1)− β(Φ(δ8)−Φ(δ6))) +Xe−r(τ−t)(Φ(δ4)−Φ(δ2)− α(Φ(δ7 −Φ(δ5)))).

2. X < B:
Pdown−out(S, t) = 0.

where, α =

(
B

S

)−1+ 2r
σ2

, β =

(
B

S

)1+ 2r
σ2

.

δ3 =
ln(S/B) + (r + 1

2σ
2)(τ − t)

σ
√

(τ − t)
, δ4 =

ln(S/B) + (r − 1
2σ

2)(τ − t)
σ
√

(τ − t)

δ5 =
ln(S/B)− (r − 1

2σ
2)(τ − t)

σ
√

(τ − t)
, δ6 =

ln(S/B)− (r + 1
2σ

2)(τ − t)
σ
√

(τ − t)

δ7 =
ln(SX/B2)− (r − 1

2σ
2)(τ − t)

σ
√

(τ − t)
, δ8 =

ln(SX/B2)− (r + 1
2σ

2)(τ − t)
σ
√

(τ − t)

3.3 Binomial Tree Model

A simple but convenient and quite popular procedure for valuing option requires constructing a binomial tree.
It is basically a diagram based discrete time model demonstrating various possible paths accompanied by the
asset prices throughout the life span of an option. It is considered that, the price of the stock follows a random
walk. At every time step, there is a specific probability to move up by a definite percentage amount and a
specific probability to move down by a definite percentage amount. As the number of steps of the tree increases,
the time step gets smaller, and this model tends to the BSM [12].

Proposition 11. Let, Smn and fmn be the n-th possible values of stock price and option price at time-step m∆t
respectively which have the following representations

Smn = undm−nS0
0 n = 0, 1, 2, ...,m, (3.10)

and,

fmn = e−r∆t[pfm+1
n+1 + (1− p)fm+1

n ] n = 0, 1, 2, ...,m, (3.11)
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Then the current option price f0 is given by

f0 = e−rτEp[fτ ] = e−nr∆t
n∑
h=0

n!

h!(n− h)!
ph(1− p)(n−h)fuhd(n−h) (3.12)

where, p = er∆t−d
u−d ,u = eσ

√
∆t, d = 1

u , u > 1.

Remark 12. The prices of european call and put option can be easily calculated by (3.15) with the following
final conditions:

fNn =

{
max{SNn −X, 0} for Call

max{X − SNn , 0} for Put

Figure 3.1: Two step Binomial tree of a Down-and-out Barrier Call option

Figure 3.1 represents a two step binomial tree for both the option price c and stock price S of a Down-and-out
Barrier Call option. At each time step the prices may either go up by a factor u > 1 accompanied by probability
p else go down by d < 1 accompanied by probability (p− 1). The option terminates when the underlying stock
price falls to a predetermined level, B.

3.4 Trinomial Tree Model

The BTM has turned out to be considerably out of date and is of little practical use. Therefore, a more
advanced model known as the TTM came into account. This model also provides discrete representation of
stock price movement, analogous to BTM. This ameliorates the BTM by enabling the price of stock to shift
up, down or remain same with specific probabilities [13].

Proposition 13. Let, Skn and fkn be the n-th possible values of stock price and option price at time-step k∆t
respectively which have the following representations

Skn = uhdlmn−h−lS0
0 n = 0, 1, 2, ..., k, (3.13)

and,

fkn = e−r∆t[puf
k+1
n+1 + pmf

k+1
n + pdf

k+1
n−1 ] n = 0, 1, 2, ..., k, (3.14)
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Then the current option price f0 is given by

f0 = e−nr∆t
n∑
h=0

n−h∑
l=0

n!

h!l!(n− h− l)!
phup

l
dp

(n−h−l)
m fuhdlmn−h−l (3.15)

where, u = eλσ
√

∆t, d = 1
u ,m = 1, u > 1 and

pu =
1

2λ2
+
r − 1

2σ
2

2λσ

√
∆t

pd =
1

2λ2
−
r − 1

2σ
2

2λσ

√
∆t

pm = 1− 1

λ2

are the risk neutral probabilities [14] [15].
Note that λ < 1 implies pm < 0, which explains the condition λ ≥ 1. In the case λ = 1, we have pm = 0 and
hence the trinomial tree reduces to a simple binomial tree. The Final conditions are given by Remark 12.

Figure 3.2: Two step trinomial tree of a Down-and-out Barrier Call option

Figure 3.2 represents a two step trinomial tree for both option price c and stock price S of a Down-and-out
Barrier Call option. At each time step the prices changes by either a factor of u > 1 with probability pu or
m with probability pm or d < 1 with probability pd. The option terminates when the underlying stock price
decreases to a predetermined level, B.

4 Results and Discussion

In this section, we approximate Down-and-Out Barrier Call and Put option prices by BTM, TTM and BSM
with the following data set [16]

{S0 = $95, B = $90, X = $100, σ = 0.25, r = 0.10, τ = 1 yr}.

Table 4.1 and Table 4.2 show the values of the Down-and-Out Barrier Call and Put options using CRR BTM
and Kamrad-Ritchken TTM for increasing number of steps.
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Table 4.1: Barrier Call Option valuation using BTM and TTM

N BSM BTM TTM Absolute Absolute
(Call) (Call) (Call) Error(BTM) Error(TTM)

25 8.8406 6.0069 2.8438 0.0101
50 7.2372 5.9942 1.2404 2.6× 10−3

75 6.2981 5.9899 0.3013 6.9× 10−3

100 7.5028 5.9997 1.506 2.9× 10−3

125 6.9839 5.9985 0.9871 1.7× 10−3

150 6.5601 5.9976 0.5633 8× 10−4

175 5.9968 6.2087 5.9970 0.2119 2× 10−4

200 7.2299 5.9986 1.2331 1.8× 10−3

250 6.7074 5.9980 0.7106 1.2× 10−3

300 6.2903 5.9976 0.2935 8× 10−4

350 6.9599 5.9979 0.9631 1.1× 10−3

400 6.6501 5.9977 0.6533 9× 10−4

450 6.3819 5.9975 0.3851 7× 10−4

500 6.1456 5.9974 0.1488 6× 10−4

Table 4.2: Barrier Put Option valuation using BTM and TTM

N BSM BTM TTM Absolute Absolute
(Put) (Put) (Put) Error(BTM) Error(TTM)

25 0.1827 0.0322 0.1393 0.0112
50 0.0711 0.0334 0.0277 0.01
75 0.0570 0.0338 0.0136 9.6× 10−3

100 0.0948 0.0409 0.0514 2.5× 10−3

125 0.0703 0.0411 0.0269 2.3× 10−3

150 0.0612 0.0412 0.0178 2.2× 10−3

175 0.0434 0.0446 0.0412 1.2× 10−3 2.2× 10−3

200 0.0828 0.0424 0.0394 1× 10−3

250 0.0623 0.0425 0.0189 9× 10−4

300 0.0491 0.0425 5.7× 10−3 9× 10−4

350 0.0729 0.0429 0.0295 5× 10−4

400 0.0615 0.0429 0.0181 5× 10−4

450 0.0529 0.0430 0.0105 4× 10−4

500 0.0477 0.0430 4.3× 10−3 4× 10−4

It is clear from Table 4.1 that, call option valued by BTM oscillates towards the exact value obtained by BSM
whereas, call option price obtained by TTM approximates the exact value correct upto two decimal places
in only 50-th steps and as the step number rises, option value approaches to the exact value more accurately.
Similar behaviour has been observed for barrier down and out put option in Table 4.2.
These behaviours are shown graphically in Figure 4.1– Figure 4.4.
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(a) Using BTM (b) Using TTM

Figure 4.1: Convergences for Barrier Call option prices obtained by BTM and TTM

Figure 4.2: Comparison among Barrier Call option prices using different methods

From Figure 4.1 we observe that for a Down-and-Out Barrier Call option the values obtained by BTM oscillates
towards the exact value obtained by BSM, whereas the values obtained by TTM initially oscillates and then
converges towards the exact value.
While Figure 4.2 represents the comparison of the BTM and TTM values for Down-and-Out Barrier Call
option. Clearly, it shows that the values obtained by TTM converges to the exact value more accurately than
the values obtained by BTM.
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(a) Using BTM (b) Using TTM

Figure 4.3: Convergences for Barrier Put option prices obtained by BTM and TTM

Figure 4.4: Comparison among Barrier Put option prices using different methods

From Figure 4.3 we observe that for a Down-and-Out Barrier Put option the the values obtained by BTM
oscillates towards the exact value obtained by BSM, whereas the values obtained by TTM initially oscillates
and then converges towards the exact value.
While Figure 4.4 represents the comparison of the BTM and TTM values for Down-and-Out Barrier Put
option. Clearly, it shows that the values obtained by TTM converges to the exact value more accurately than
the values obtained by BTM.
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Figure 4.5: Comparison of Errors for different Barrier Call option prices

In Figure 4.5, we have shown the comparison of absolute errors for Down-and-Out Barrier Call option prices
obtained by the BTM and TTM . It confirms that the TTM gives more accurate value than the BTM since
the absolute errors of TTM tends to zero while the absolute errors of BTM is oscillating.

It is evident that both the lattice procedures BTM and TTM give very significant results against the data
set mentioned at the beginning of this section. Our numerical results coincide with the results presented in
[16]. In addition, we have shown the convergence of our results obtained by BTM and TTM with the BSM
graphically (see Figure 4.1–Figure 4.5).

5 Conclusion

In this paper, we have got the opportunity to work on an exotic option, namely, Barrier option pricing. In
particular, we approximate the Barrier option premium numerically using some lattice models such as BTM
and TTM. For both these models we have got very significant results compare to that of BSM. We also found
that TTM gives more accurate results than the BTM. Moreover, we can say that lattice models like BTM
and TTM are satisfactorily flexible to price exotic options compare to other models such as Finite difference
model, Monte carlo etc. We have generated some MATLAB coding to produce all our numerical and graphical
results shown in this work (see Appendix). And finally, we can say that this study could be a useful guide line
to evaluate other option price like Asian, Binary, Lookback etc.
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APPENDIX : Matlab Code for pricing Down and Out Barrier Option

1 f unc t i on [ Pr i ce ]= Barr i e rOpt ions ( t ree , bo , cp , ea , s0 , k , r , s i g ,T,B,N,R)
2 d e l t =(T) /N;
3 i f ( t r e e==’B ’ ) % f o r Binomial t r e e
4 niu=log ( s0 /B) /( s i g ∗ s q r t ( d e l t ) ) ;
5 N0=f i x ( niu ) ;
6 i f ( niu==N0)
7 lam=1;
8 e l s e
9 lam=niu /N0 ;

10 end
11 e l s e
12 lam=1; %f o r Binomial t r e e
13 end
14 u = exp ( lam∗ s i g ∗ s q r t ( d e l t ) ) ;
15 % p r o b a b i l i t i e s
16 p u = (1/(2∗ lam ˆ2) ) +(( r −0.5∗( s i g ˆ2) ) ∗ s q r t ( d e l t ) /(2∗ lam∗ s i g ) ) ;
17 p m = 1−1/lam ˆ2 ;
18 p d = (1/(2∗ lam ˆ2) ) −(( r −0.5∗( s i g ˆ2) ) ∗ s q r t ( d e l t ) /(2∗ lam∗ s i g ) ) ;
19 %stock p r i c e at each node
20 f o r i =1:N+1
21 f o r j=N−i +2:N+i
22 s ( j , i )=uˆ(N−j +1)∗ s0 ;
23 end
24 end
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25 %payo f f at maturity
26 switch bo
27 case { ’ do ’ } %f o r down and out b a r r i e r opt ion
28 f o r j =1:2∗N+1
29 i f ( s ( j ,N+1)<=B)
30 c ( j ,N+1)=R; %R i s rebate
31 e l s e
32 i f ( cp ==’ c ’ ) %f o r c a l l opt ion
33 c ( j ,N+1) = max( s ( j ,N+1)−k , 0 ) ;
34 e l s e
35 c ( j ,N+1) = max(k−s ( j ,N+1) ,0 ) ;
36 end
37 end
38 end
39 end
40 %p a y o f f s at in t e rmed ia t e s t ep s
41 switch bo
42 case { ’ do ’ }
43 i=N;
44 whi le i>0
45 f o r j=N−i +2:N+i
46 i f ( s ( j , i )>B)
47 i f ( ea==’ e ’ ) %f o r european opt ion
48 c ( j , i )=exp(−r ∗ d e l t ) ∗( p u∗c ( j −1, i +1)+p m∗c ( j , i +1)+p d∗c ( j +1, i +1) ) ;
49 e l s e
50 i f ( cp ==’ c ’ )
51 c ( j , i )=max( exp(−r ∗ d e l t ) ∗( p u∗c ( j −1, i +1)+p m∗c ( j , i +1)+p d∗c ( j +1, i +1) ) , s ( j , i )−k ) ;
52 e l s e
53 c ( j , i )=max(k−s ( j , i ) , exp(−r ∗ d e l t ) ∗( p u∗c ( j −1, i +1)+p m∗c ( j , i +1)+p d∗c ( j +1, i +1) ) ) ;
54 end
55 end
56 e l s e
57 c ( j , i ) = 0 ;
58 end
59 end
60 i=i −1;
61 end
62 end
63 Pr ice = c (N+1 ,1)
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ABSTRACT

In this paper, a deterministic model for the dynamics of chikungunya virus transmission is formulated and
analyzed. It is shown that the model has a disease free equilibrium (DFE ) and by using the basic reprodution
number (<0) local stability of DFE is proved when <0 < 1. Also, the global stability of DFE is investigated by
Lyapunov function and LaSalle Invariance Principle. We show that there exists a unique endemic equilibrium
(EE ) of the model which is locally asymptotically stable whenever <0 > 1 and establish the global stability of
the EE when <0 > 1, by using Lyapunov function and LaSalle Invariance Principle for a special case. Numerical
simulations and sensitivity analysis show that the destruction of breeding sites and reduction of average life
spans of vector would be effective prevention to control the outbreak. Controlling of effective contact rates and
reducing transmissions probabilities may reduce the disease prevalence.
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1 Intrduction

Chikungunya is an emerging mosqueto-borne viral disease caused by the chikungunya virus (CHIKV). It was
first identified during an outbreak in southern Tanzania in 1952 [1, 2]. The term “chikungumya” comes from
a word in the Makonde or Kimakonde language of southeast Tanzania and northern Mozambique and means
“to become contorted” or “bend over” [1]. Chikungunya virus is transmitted to people by several species of
mosquito of the genus Aedes, most common genus are Aedes aegypti and Ades albopictus [1, 3]. They mainly
bite during daylight hour [3] and peaks of bitting activity is during early morning and late afternoon [1, 4]. A
mosquito becomes infected after biting an infected human and an extrinsic incubation period is between two to
four days [5, 6]. After the incubation period mosquitoes can transmit the virus. Mosquitoes remain inefectious
for life time [7] and no vertical transmission is yet proved till today [8].
A human is infected after an effective bite of an infected mosquito, the intrinsic incubation period in the human
host is usually 1 to 12 days [8, 9, 10] and during this period infected human unable to transmit the virus. After
the incubation period most of the infected people develop symptoms. Common symptoms are: fever, severe
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joint pain, headache, rash and some digestive symptoms: abdominal pain, nausea, vomiting or diarrhea may
also occur [1, 3, 11]. Pain usually occurs in peripheral joints, such as wrists, ankles, joints of the hands and feet,
in some of the larger joints: shoulders, elbows and knees, also may occur in muscles and ligaments [12, 13]. The
joint pain may lasts a few days or a few weeks, but in some cases it may persist for a long time (several months,
even years) following the acute infection [1, 14, 15] called subacute or chronic phase. After the viraemia period,
during the period infected human is infectious, human recovers. But in some cases chikungunya viral antigen
was found in a muscle biopsy of a person suffering a recurrent episode of disease three months after initial onset
[16]. Additionally, viral antigen and viral RNA were found in macrophages in the synovial joint of a person
experiencing a relapse of musculoskeletal disease 18 months after initial infection [17]. So, there is a possibility
to transmit virus from human to mosquito after acute phase.

There is no specific preventive vaccine and antiviral medicine to treat the disease [1, 3, 18]. Supportive cares
such as rest, drinking water, etc are suggested and symptomatic treatments including the use of nonsteroidal
anti-inflammatory drugs such as naproxen, non-aspirin analgesics, such as, paracetamol (acetaminophen) are
primarily directed to reduce fever and pain [18]. However, a vaccine exists but it is in an early-stage clinical
trial and will not be commercially available in the near future [19].

Chikungunya re-emerges in many countries of Africa, Asia, Europe and America since the first outbreak
in Tanzania. In Democratic Republic of the Congo, it was first isolated in 1958, after that it was isolated in
1960 [20]. But in 2000-2001, during an outbreak around 50,000 people became infected [1]. The first outbreak
in Asia was in Bangkok, Thailand in 1958 [21]. Other outbreaks include India in 1960 and Srilanka in 1970
[22], Malaysia in 1998-1999 [23], Vietnam in 1975, Indonesia in 1982 [24], Italy in 2007 and France in 2010 [25].
In the last decade, the major outbreak was in Reunion Island in 2005, during this outbreak 2,666,000 people
were infected while the total population was 770,000 and around 250 death cases were reported [26]. In India,
outbreak was large in 2006-2007 and during this outbreak 1.39 million cases were reported officially in 2006 and
37,683 cases were reported by national authority in 2007 [1]. In American countries, from 2013-2014 around
1,118,763 suspected cases and 24,682 confirmed cases were reported by the Pan American Health Organization
(PAHO) regional office [27]. In Bangladesh, the first outbreak of chikungunya was investigated in 2008 [28].

In the last century, compartmental mathematical models have been widely used for studying the epidemio-
logical models, in particular vector borne infectious disease models [29, 30]. A several number of deterministic
models have been proposed to study the chikungunya virus [5, 8, 9, 31] and the references therein. A simple
deterministic model of the transmission of chikungunya virus between human and mosquitoes has developed by
Yakob and Clements [31]. They have fitted the model with real data, estimated the type of basic reproduction
number and analyzed the sensitivity of the parameters. Age structured deterministic model also proposed,
analyzed theoritically and numerically [32]. Authors in [33], formulate a model that incorporate the dynamics
of two circulating viral disease: dengue and chikungunya by considering variable population size and infection
in sub-acute and chronic phase but not analyzed the model qualitatively. The spatio-temporal transmission of
chikungunya is analysed in [34] and it is shown that the prevention of moving symptomatic individuals is not
sufficient mechanisms to control the outbreak, since the presence of asymptomatic individuals spread the dis-
ease silently within the population. In [9], a temporal model is proposed to study the outbreak of chikungunya
in several cities of Re’union island in 2005. In this model, the existence and the stability of the disease free
equilibrium is investigated by using basic reproduction number but the dynamics of the endemic equilibrium
are not considered.

In this research article, we develop a new deterministic model to study the transmission of chikungunya
virus. In our model, we incorporate a class of infected individuals those are in subacute or chronic phase. Also
we consider the treatment to the infected individuals in different classes. The paper is organized as follows: in
section 2, the model is formulated and various properties including the boundedness and the positivity of the
solutions are analyzed, also the existence and the stability of the equilibrium are investigated by using different
techniques in section 3. Numerical simulations and sensitivity analysis are carried out in section 4. In section
5, discussion and conclusion of the study are drawn.

2 Model formulation

The human population is divided into the following six mutually-exclusive classes: susceptible (Sh), exposed
(Eh), symptomatically infectious in acute phase (Is1), infected in subacute phase (Is2), asymptomatically infec-
tious (Ia) and recovered (Rh). So, the total population at time t is Nh(t) = Sh(t)+Eh(t)+Ia(t)+Is1(t)+Is2(t)+
Rh(t). Similarly, the vector population is divided into the following three classes: susceptible (Sm), exposed
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(Em) and infectious (Im). Therefore, the total matured mosquito population is Nm(t) = Sm(t)+Em(t)+Im(t).
Assume that the requirement rate of human population is constant, π1, and human population is born as

susceptible, thus there is no vertical transmission. Also, suppose that the mosquito requirement rate is constant,
π2. A susceptible human is infected when bitten by an infectious mosquito and goes to the class (Em). Suppose
that the biting rate of each mosquito is bm per day. Since the number of bites by mosquitoes equals to the total
number of bites received by the humans so, we have

bmNm = bh(Nh, Nm)Nh (2.1)

where, bh is the rate of bites received by humans. So that

Nm =
bh(Nh, Nm)Nh

bm
(2.2)

Now, let β1 be the probability that a bite from an infectious mosquito will lead a host infection. So that, β1bh
is the effective contact rate between a susceptible human and infectious mosquito. Thus, the rate at which
susceptible human acquire infection, after an effective contact with infectious mosquito, is λ1 and given by

λ1 =
β1bh(Nh, Nm)Im

Nm
(2.3)

Thus, equation (2.2) and (2.3) gives

λ1 =
bmβ1Im
Nh

(2.4)

This infection rate is called force of infection. After an intrinsic incubation period, the time elapsed by the virus
from the moment of infection to the beginning of infectiousness, a portion p of populations in the class Eh moves
to the asymptomatically infectious class Ia and the remaining portion (1− p) enters into the symptomatically
infectious class Is1. After the viremic period, infectious humans of both class class Ia and Is1 are recovered and
go forward to the class Rh. But some symptomatically infectious individuals go to the sub-acute or chronic
phase Is2 and symptoms can persist for long time [14, 15]. Moreover, chikungunya virus antigen is found in
a muscle biopsy of a person suffering of disease three months after initial onset [16]. So, there is a chance for
susceptible mosquitoes to be infected from individuals in class Is2. Let µ1 be the natural mortality rate of
human population.

A susceptible mosquito goes to the exposed class when it bites an infectious human in the class Ia and Is1,
also in class Is2 but the rate may be neglected. The effective contact rate between the susceptible mosquitoes
and infectious hosts (Ia and Is1) is bmβ12, and between Sm and Is2 is bmb22, where β12 is the probability that
a bite leads to infection of the mosquito from the classes Ia and Is1, and β22 is that from Is2. Hence, the rate
at which mosquitoes acquire infection from both asymptomatically infectious and symptomatically infectious
human is given by

λ2 =
bmβ12(Ia + Is1) + bmβ22Is2

Nh
(2.5)

Mosquitoes in the exposed class become infectious after an extrinsic incubation period, the period necessary for
the virus to follow a cycle that brings it from the mosquito stomach to its salivary gland. The mortality rate for
the classes Sm, Em and Im is µ2. We also assume that there is no vertical transmission. Now, considering all of
the above assumtions and using the law in[35], we can construct the following deterministic system of nonlinear
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Figure 2.1: Schematic diagram for the chikungunya virus transmission. The population of humans is

divided into susceptible (Sh), exposed (Eh) to the disease, asymtomatically infectious (Ia), symptomatically infectious

(Is1) in acute phase, infected in sub-acute phase (Is2) and recovered (Rh) from chikungunya. The mosquitoes population

is divided into susceptible (Sm), exposed (Em) and infectious (Im). The black heavy arrows indicate the disease transition

from one compartment to the other compartment and dashed arrows indicate the contacts between hosts and vector.

differential equations to describe the transmission dynamics of chikungunya virus:

dSh
dt

= π1 − λ1Sh − µ1Sh

dEh
dt

= λ1Sh − η1Eh − µ1Eh

dIa
dt

= pη1Eh − γ1Ia − ρ1Ia − µ1Ia

dIs1
dt

= (1− p)η1Eh − γ2Is1 − ρ2Is1 − r1Is1 − σ1Is1 − µ1Is

dIs2
dt

= r1Is1 + σ1Is1 − r2Is2 − σ2Is2 − µ1Is2

dRh
dt

= γ1Ia + ρ1Ia + γ2Is1 + ρ2Is1 + r2Is2 + σ2Is2 − µ1Rh

dSm
dt

= π2 − λ2Sm − µ2Sm

dEm
dt

= λ2Sm − η2Em − µ2Em

dIm
dt

= η2Em − µ2Im

Sh(0) = Sh0, Eh(0) = Eh0, Ia(0) = Ia0, Is1(0) = Is10, Is2(0) = Is20,

Rh(0) = Rh0, Sm(0) = Sm0, Em(0) = Em0, Im(0) = Im0,

(2.6)

where, λ1 and λ2 are given in equation (2.4) and (2.5) respectively.

The schematic diagram of the model is depicted in Figure 2.1, and the description of the associated param-
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eters of the model (2.6) is given in Table 2.1.

Table 2.1: The variables and parameters of the model (2.6) with description

Variables and Parameters Description
Sh Susceptible human population
Eh Exposed human population
Ia Asymptomatically infectious human population
Is1 Symptomatically infectious human population in acute phase
Is2 Infected humans population in sub-acute phase
Rh Recovered human population
Sm Susceptible mosquito population
Em Exposed mosquito population
Im Infectious mosquito population
π1 Recruitment rate Human population
µ1 Natural death rate of human population
π2 Recruitment rate of mosquito population
µ2 Natural mortality rate of mosquito population
β1 Transmission probability per bite from Im to Sh
β12 Transmission probability per bite from both Ia and Is1 to Sm
β22 Transmission probability per bite from Is2 to Sm
bm Daily mosquito biting rate
λ1 Infection rate for human population
λ2 Infection rate for mosquito population
η1 Progression rate of exposed human population
η2 Progression rate of exposed mosquito population
r1 Progression rate from Is1 to Is2
γ1 Recovery rate of human population from the class Ia
γ2 Recovery rate of human population from the class Is1
r2 Recovery rate of human population from the class Is2
ρ1, ρ2, σ1, σ2 Treatment rate
p Fraction of exposed human who do not develop symptoms
1− p Fraction of exposed human who develop symptoms

3 Analysis of the model

3.1 Properties of the model

Here we prove some basic qualitative properties of solutions to the model (2.6), such as positivity and
boundedness of the solutions. These properties can shown by the following lemma:

Lemma 1. The region, Ω = {(Sh, Eh, Ia, Is1, Is2, Rh, Sm, Em, Im) : Sh + Eh + Ia + Is1 + Is2 +Rh ≤ π1

µ1
, Sm +

Em + Im ≤ π2

µ2
} ⊂ R9

+, is positively invariant and attracting for the basic model (2.6).

Proof. The rate of change of the human population and mosquito population are obtained by adding the first
six equations and last three equations of the model respectively (2.6) as follows

dNh(t)

dt
= π1 − µ1Nh(t)

dNm(t)

dt
= π2 − µ2Nm(t)

Thus, we see that dNh(t)
dt < 0 if Nh(t) > π1/µ1 and dNm(t)

dt < 0 if Nm(t) > π2/µ2. Also by using a stan-
dard comparison theorem [44], it can be shown that Nh(t) = Nh(0)e−µ1t + (π1/µ1)(1 − e−µ1t) and Nm(t) =
Nm(0)e−µ2t + (π2/µ2)(1 − e−µ2t). In particular, Nh(t) < π1/µ1 if Nh(0) < π1/µ1 and Nm(t) < π2/µ2 if
Nm(0) < π2/µ2 .Thus, Ω is positively invariant. Further, Nh(t) > π1/µ1 and Nm(t) > π2/µ2, then either the
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solution enters Ω in finite time, or Nh(t) approaches π1/µ1 and Nm(t) approaches π2/µ2, and the variables
Eh(t), Ia(t), Is1(t), Is2(t), Rh(t), Em(t) and Im(t) approach zero. Hence, Ω is attracting. Thus, the model (2.6)
is well-posed in Ω epidemiologically and mathematically [30] and it is sufficient to study the dynamics of the
model (2.6) in Ω.

3.2 Equilibrium points and stability analysis

The model (2.6) may have two types of equilibrium, namely disease free equilibrium (DFE ) and endemic
equilibrium (EE ). At any equilibrium, we set dSh

dt = 0, dEh

dt = 0, dIadt = 0, dIs1dt = 0, dIs2dt = 0, dRh

dt = 0, and obtain
the following relations

Ia =
pη1
k5

Eh

Is1 =
(1− p)η1

k7
Eh

Is2 =
η1(1− p)k1

k6k7
Eh

Rh =
η1(1− p)(k1k2k5 + k4k5k6) + η1pk3k6k7

µ1k5k6k7
Eh

Sh = Nh −
a

k5k6k7µ1
Eh

Eh =
β1bmµ1k5k6k7ImNh

k5k6k7µ1(µ1 + η1)Nh + aβ1bmIm
,

(3.1)

where, k1 = σ1 + r1, k2 = σ2 + r2, k3 = γ1 + ρ1, k4 = γ2 + ρ2, k5 = γ1 + ρ1 + µ1, k6 = r2 + σ2 + µ1,k7 =
γ2 + ρ2 + σ1 + r1 + µ1,
a = k5k6k7µ1 + k5k6η1(1− p)(k4 + µ1) + k1k5η1(1− p)(k2 + µ1 + k6k7η1p(k3 + µ1).

Also by setting dSm

dt = 0, dEm

dt = 0, dImdt = 0, we have the following relations

Sm =
π2

λ2 + µ2

Em =
π2λ2

(η2 + µ2)(λ2 + µ2)

Im =
π2η2λ2

µ2(η2 + µ2)(λ2 + µ2)

(3.2)

3.3 Stability of disease free equilibrium (DFE)

DFE of the model (2.6) is given by

Ē0 = (S∗h, E
∗
h, I
∗
a , I
∗
s1, I

∗
s2, R

∗
h, S

∗
m, E

∗
m, I

∗
m) =

(
π1
µ1
, 0, 0, 0, 0, 0,

π2
µ2
, 0, 0

)
3.3.1 Local stability of DFE

We investigate the local stability of the DFE by using the next generation matrix of the system (2.6). Now,
we calculate the basic reproduction number of the model (2.6) according to [49]. Consider the compartments
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which are related to the infection to obtain the following subsystem

dEh
dt

= λ1Sh − η1Eh − µ1Eh

dIa
dt

= pη1Eh − γ1Ia − ρ1Ia − µ1Ia

dIs1
dt

= (1− p)η1Eh − γ2Is1 − ρ2Is1 − r1Is1 − σ1Is1 − µ1Is1

dIs2
dt

= r1Is1 + σ1Is1 − r2Is2 − σ2Is2 − µ1Is2

dEm
dt

= λ2Sm − η2Em − µ2Em

dIm
dt

= η2Em − µ2Im.

(3.3)

From the subsystem (3.3), we find the following transmission matrix F (associated with new infection terms)
and transition matrix V (considering transferred terms):

F =



0 0 0 0 0 β1bmSh

Nh

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 β12bmSm

Nh

β12bmSm

Nh

β22bmSm

Nh
0 0

0 0 0 0 0 0


and

V =


η1 + µ1 0 0 0 0 0
−pη1 k5 0 0 0 0

−(1− p)η1 0 k7 0 0 0
0 0 −k1 k6 0 0
0 0 0 0 η2 + µ2 0
0 0 0 0 −η2 µ2

 ,

where, k1 = r1 + σ1, k5 = γ1 + ρ1 + µ1, k6 = r2 + σ2 + µ1, k7 = γ2 + ρ2 + r1 + σ1 + µ1.
The basic reproduction number [49] is the spectral radius of the matrix FV −1, that is, <0 = ρ(FV −1).

Now, the eigenvalues of FV −1 are

0, 0, 0, 0,
bm
√
β1η1η2{β12k5k6(1−p)+β12k6k7p+β22k1k5(1−p)}S∗

hS
∗
m√

k5k6k7µ2(µ1+η1)(µ2+η2)Nh

and− bm
√
β1η1η2{β12k5k6(1−p)+β12k6k7p+β22k1k5(1−p)}S∗

hS
∗
m√

k5k6k7µ2(µ1+η1)(µ2+η2)Nh

.

Therefore, it follows that the basic reproduction number of the model is

<0 =
bm
√
β1η1η2{β12k5k6(1− p) + β12k6k7p+ β22k1k5(1− p)}S∗mS∗h√

k5k6k7µ2(µ1 + η1)(µ2 + η2)Nh

According to [49], we know that if <0 < 1 then the DFE is locally asymptotically stable, that is the disease
will not persist in the community; whereas if <0 > 1, then it is unstable and the disease will be spread out.
Thus we have the following result.

Theorem 1. The DFE, Ē0, of the model (2.6) is locally asymptotically stable if <0 < 1 and unstable if <0 > 1.

The basic reproduction number, <0, is the average number of new cases produced by a single infected
individual in a population that is totally susceptible. Thus, from the above Theorem (1), chikungunya will be
eliminated from the community when <0 < 1.

3.3.2 Global stability of DFE

Before to prove the global stability of DFE, we consider the region,

Ω∗ = {(Sh, Eh, Ia, Is1, Is2, Rh, Sm, Em, Im) ∈ Ω : Sh ≤ S∗h, Sm ≤ S∗m}

and prove the following lemma:
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Lemma 2. The region Ω∗ is positively invariant and attracting for the model (2.6).

Proof. From the first equation of the model (2.6), where, S∗h = π1/µ1, it follows that

dSh
dt

= π1 − λ1Sh(t)− µ1Sh(t)

≤ π1 − µ1Sh(t)

= µ1[π1/µ1 − Sh(t)]

= µ1[S∗h − Sh(t)]

Hence, we have
Sh(t) ≤ S∗h − [S∗h − Sh(0)]e−µ1t

Thus, if Nh(t) ≤ π1/µ1 and Sh(0) ≤ π1/µ1, then it follows that either Sh(t) → S∗h as t → ∞, or after finite
time Sh(t) ≤ S∗h, since dSh

dt < 0 for Sh(t) > S∗h.
Finally, it follows from the seventh equation of the model (2.6), where, S∗m = π2/µ2, it follows that

dSm
dt

= π2 − λ2Sm(t)− µ2Sm(t)

≤ π2 − µ2Sm(t)

= µ2[π2/µ2 − Sm(t)]

= µ2[S∗m − Sm(t)]

Thus,
Sm(t) ≤ S∗m − [S∗m − Sm(0)]e−µ2t

Hence, if Sm(0) ≤ π2/µ2, then either Sm(t) approaches S∗m asymptotically, or after some finite time Sm(t) ≤ S∗m,
since dSm

dt < 0, if Sm(t) > S∗m. Therefore, the region Ω∗ is positively invariant and attracts all solutions of the
model (2.6) in R9

+.

Now, we claim the following:

Theorem 2. The DFE, Ē0, of the model (2.6) is globally asymptotically stable in the region Ω∗ if <0 < 1.

Proof. We prove the theorem by using Lyapunov function [40, 45, 46] and LaSalle Invariance Principle [47].
Consider the following Lyapunov function

F = f1Eh + f2Ia + f3Is1 + f4Is2 + f5Em + f6Im

where,

f1 =
µ2Nh<0

bmβ1S∗h
, f2 =

bmβ12η2S
∗
m

k5Nh(µ2 + η2)<0
, f3 =

bmη2S
∗
m(β12k6 + β22k1)

k6k7Nh(µ2 + η2)<0
,

f4 =
bmη2β22S

∗
m

k6Nh(µ2 + η2)<0
, f5 =

η2
µ2 + η2

, f6 = 1

Now, the time derivative of the Lyapunov function is given by

Ḟ = f1Ėh + f2İa + f3 ˙Is1 + f4 ˙Is2 + f5Ėm + f6 ˙Im

=
µ2Nh<0

bmβ1S∗h
[λ1Sh − η1Eh − µ1Eh] +

bmβ12η2S
∗
m

k5Nh(µ2 + η2)<0
[pη1Eh − k5Ia]

+
bmη2S

∗
m(β12k6 + β22k1)

k6k7Nh(µ2 + η2)<0
[(1− p)η1Eh − k7Is1] +

bmη2β22S
∗
m

k6Nh(µ2 + η2)<0
[k1Is1 − k6Is2]

+
η2

µ2 + η2
[λ2S

∗
m − η2Em − µ2Em] + η2Em − µ2Im

=
bmη2β12S

∗
m

Nh(µ2 + η2)<0
(<0 − 1)Ia +

bmη2β12S
∗
m

Nh(µ2 + η2)<0
(<0 − 1)Is1

+
bmη2β12S

∗
m

Nh(µ2 + η2)<0
(<0 − 1)Is2 + µ2(<0 − 1)Im
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Thus, Ḟ < 0 if <0 < 1 and Ḟ = 0 if and only if Ia = Is1 = Is2 = Im = 0. It follows, from the LaSalle
Invariance Principle [47] , that Eh → 0, Ia → 0, Is1 → 0, Is2 → 0, Em → 0 and Im → 0 as t →∞. That is, the
disease will be eliminated. Now, from the first and seventh equations of the model with Eh = Ia = Is1 = Is2 =
Rh = Em = Im = 0, it follows that Sh → S∗h and Sm → S∗m as t→∞.
Thus, limt→∞(Sh, Eh, Ia, Is1, Is2, Rh, Sm, Em, Im) = (S∗h, 0, 0, 0, 0, 0, S

∗
m, 0, 0) = Ē0 for <0 ≤ 1. Therefore, the

DFE, Ē0, is GAS in Ω∗ if <0 ≤ 1.

Epidemiological significance of the above theorem is that the chikungunya disease will be eliminated perma-
nently from the community if we can reduce the threshold quantity (<0) to less than one. The convergence of
the total number of infected human population and mosquito population is shown in Figure 3.1 whenever the
quantity <0 < 1.

3.4 Stability of Endemic Equilibrium (EE)

3.4.1 Existence of Endemic Equilibrium

In this section, we find the condition for the existence of endemic equilibrium. Let the endemic equilibrium
point of the model (2.6) be

Ē1 = (S∗∗h , E
∗∗
h , I

∗∗
a , I∗∗s1 , I

∗∗
s2 , R

∗∗
h , S

∗∗
m , E

∗∗
m , I

∗∗
m ),

and at the EE, the expressions in (3.1) and (3.2) become

S∗∗h =
π1

λ∗∗1 + µ1

E∗∗h =
π1λ

∗∗
1

(λ∗∗1 + µ1)(η1 + µ1)

I∗∗a =
pπ1η1λ

∗∗
1

k5(λ∗∗1 + µ1)(η1 + µ1)

I∗∗s1 =
(1− p)π1η1λ∗∗1

k7(λ∗∗1 + µ1)(η1 + µ1)

I∗∗s2 =
(1− p)π1η1λ∗∗1 k1

k6k7(λ∗∗1 + µ1)(η1 + µ1)

R∗∗h =
π1η1λ

∗∗
1 [k5(1− p)(k1k2 + k4k6) + pk3k6k7]

k5k6k7µ1(λ∗∗1 + µ1)(η1 + µ1)

S∗∗m =
π2

λ∗∗2 + µ2

E∗∗m =
π2λ

∗∗
2

(λ∗∗2 + µ2)(η2 + µ2)

I∗∗m =
π2η2λ

∗∗
2

µ2(λ∗∗2 + µ2)(η2 + µ2)

The forces of infection at the EE state are

λ∗∗1 =
β1bmI

∗∗
m

N∗∗h

and

λ∗∗2 =
β12bm(I∗∗a + I∗∗s1 ) + bmβ22I

∗∗
s2

N∗∗h

Now, substituting the expression of I∗∗a , I∗∗s1 , I
∗∗
s2 in the expression of λ∗∗2 , we have

λ∗∗2 =
bmβ12I

∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h

=
bmπ1η1λ

∗∗
1 [k5(1− p)(k1β22 + k6β12) + pk6k7β12]

k5k6k7(λ∗∗1 + µ1)(η1 + µ1)N∗∗h
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Simulations of the model (2.6) showing the total number of infected human population (Eh + Ia +
Is1 + Is2) as a function of time when <0 < 1, using various initial conditions. Parameter values used as given
in Table 4.2 with π1 = 1.2, π2 = 3800; (a) β22 = 0, without treatment; (c) β22 = 0.005, without treatment;
(e) β22 = 0.005, with treatment. And (b), (d), (f) depict the corresponding total number of infected mosquito
population (Em + Im).

Also, we have

λ∗∗1 =
bmβ1Im
N∗∗h

=
b2mπ1π2η1η2β1λ

∗∗
1 [k5(1− p)(k1β22 + k6β12) + pk6k7β12]/[µ2(µ2 + η2)N∗∗h ]

bmπ1η1λ∗∗1 [k5(1− p)(k1β22 + k6β12) + pk6k7β12] + k5k6k7µ2(λ∗∗1 + µ1)(η1 + µ1)N∗∗h
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From where, we find the following quadratic equation

c1(λ∗∗1 )2 − c2(λ∗∗1 ) = 0,

where,

c1 = µ2(µ2 + η2)N∗∗h [β12bmk6k7η1pπ1 + π1η1bmk5(1− p)(k1β22 + k6β12) + k5k6µ2(µ1 + η1)N∗∗h ]

and

c2 = b2mπ1π2η1η2β1[k5(1− p)(k1β22 + k6β12) + pk6k7β12]− k5k6k7µ1µ
2
2(µ1 + η1)(µ2 + η2)(N∗∗h )2

= k5k6k7µ1µ
2
2(µ1 + η1)(µ2 + η2)(N∗∗h )2[

b2mπ1π2η1η2β1[k5(1− p)(k1β22 + k6β12) + pk6k7β12]

k5k6k7µ1µ2
2(µ1 + η1)(µ2 + η2)(N∗∗h )2

− 1

]
= k5k6k7µ1µ

2
2(µ1 + η1)(µ2 + η2)N2

h(<2
0 − 1)

Therefore, the quadratic equation has a positive real root if <2
0 > 1.

According to the above result, we claim the following:

Lemma 3. The model (2.6) has a unique endemic equilibrium whenever <0 > 1, and no positive equilibrium
otherwise.

3.4.2 Local Stability of EE

Using Nh = N∗∗h , Nm = N∗∗m and the definition Sh = N∗∗h −Eh−Ia−Is1−Is2−Rh and Sm = N∗∗m −Em−Im,
we have the following reduced system

dEh
dt

=
bmβ1Im
N∗∗h

(N∗∗h − Eh − Ia − Is1 − Is2 −Rh)− η1Eh − µ1Eh

dIa
dt

= pη1Eh − k5Ia
dIs1
dt

= (1− p)η1Eh − k7Is1
dIs2
dt

= k1Is1 − k6Is2
dRh
dt

= k3Ia + k4Is1 + k2Is2 − µ1Rh

dEm
dt

=
bmβ12Ia + bmβ12Is1 + bmβ22Is2

N∗∗h
(N∗∗m − Em − Im)− η2Em − µ2Em

dIm
dt

= η2Em − µ2Im

(3.4)

It is easy to show that the system (3.4) has a unique EE of the form Ē1 = (E∗∗h , I
∗∗
a , I∗∗s1 , I

∗∗
s2 , R

∗∗
h , E

∗∗
m , I

∗∗
m ).

Now, we prove the local stability of EE following the method given in [42], which is based on using Krasnoselskii
sub-linearity trick [48]. Assume that the reduced system has a solution of the form

Z̄(t) = Z̄0e
−wt (3.5)

with Z̄0 = (Z1, Z2, Z3, Z4, Z5, Z6, Z7) and w,Zi ∈ C(i = 1, 2, ..., 7), where, C denotes the set of complex numbers.
Substituting a solution of the form (3.5) into the linearized system of (3.4) around the endemic equilibrium, we
have the following system of linear equations
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wZ1 = −
(
bmβ1I

∗∗
m

N∗∗h
+ η1 + µ1

)
Z1 −

bmβ1I
∗∗
m

N∗∗h
Z2 −

bmβ1I
∗∗
m

N∗∗h
Z3 −

bmβ1I
∗∗
m

N∗∗h
Z4

− bmβ1I
∗∗
m

N∗∗h
Z5 +

bmβ1(N∗∗h −N∗∗h − I∗∗s1 − I∗∗s2 −R∗∗)
N∗∗h

Z7

wZ2 = pη1Z1 − k5Z2

wZ3 = (1− p)η1Z1 − k7Z3

wZ4 = k1Z3 − k6Z4

wZ5 = k3Z2 + k4Z3 + k2Z4 − µ1Z5

wZ6 =
bmβ12(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z2 +

bmβ12(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z3

+
bmβ22(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z4 −

(
bmβ12I

∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h
+ η2 + µ2

)
Z6

− bmβ12I
∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h
Z7

wZ7 = η2Z6 − µ2Z7

(3.6)

Solving the second, third and fourth equations for Z2, Z3, Z4 in terms of Z1 and substituting into the first
equation, solving sixth equation for Z7 substituting into the fifth equation and simplifying we obtain, the
following equivalent system[

1 +
1

η1 + µ1

(
w +

bmβ1I
∗∗
m

N∗∗h

[
1 +

pη1
w + k5

+
(1− p)η1
w + k7

+
k1(1− p)η1

(w + k6)(w + k7)

])]
Z1

= −bmβ1I
∗∗
m

N∗∗h
Z5 +

bmβ1(N∗∗h −N∗∗h − I∗∗s1 − I∗∗s2 −R∗∗h )

N∗∗h
Z7(

1 +
w

k5

)
Z2 =

pη1
k5

Z1(
1 +

w

k7

)
Z3 =

(1− p)η1
k7

Z1(
1 +

w

k6

)
Z4 =

k1
k6
Z3(

1 +
w

µ1

)
Z5 =

k3
µ1
Z2 +

k4
µ1
Z3 +

k2
µ1
Z4

Z6 +
1

η2 + µ2

(
w +

bmβ12I
∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h

)
Z6

+
1

η2 + µ2

(
η2

w + µ2

bmβ12I
∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h

)
Z6

=
bmβ12(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z2 +

bmβ12(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z3

+
bmβ22(N∗∗m − E∗∗m − I∗∗m )

N∗∗h
Z4(

1 +
w

µ2

)
Z7 =

η2
µ2
Z6

(3.7)

Adding the first and fifth equation of the system (3.7), and moving all the negative terms to their respective
left-hand side to give
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[1 + F1(w)]Z1 + [1 + F5(w)]Z5 = (MZ̄)1 + (MZ̄)5

[1 + F2(w)]Z2 = (MZ̄)2

[1 + F3(w)]Z3 = (MZ̄)3

[1 + F4(w)]Z4 = (MZ̄)4

[1 + F6(w)]Z6 = (MZ̄)6

[1 + F7(w)]Z7 = (MZ̄)7,

(3.8)

where,

F1(w) =
1

η1 + µ1

(
w +

bmβ1I
∗∗
m

N∗∗h

[
1 +

pη1
w + k5

+
(1− p)η1
w + k7

+
k1(1− p)η1

(w + k6)(w + k7)

])
F2(w) =

w

k5

F3(w) =
w

k7

F4(w) =
w

k6

F5(w) =
w

µ1
+

bmβ1I
∗∗
m

(η1 + µ1)N∗∗h

F6(w) =
1

η2 + µ2

(
w +

bmβ12I
∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h

)
+

η2
(w + µ2)(η2 + µ2)

bmβ12I
∗∗
a + bmβ12I

∗∗
s1 + bmβ22I

∗∗
s2

N∗∗h

F7(w) =
w

µ2
,

and M is the matrix

M =



0 0 0 0 0 0 Mh
pη1
k5

0 0 0 0 0 0
(1−p)η1
k5

0 0 0 0 0 0

0 0 k1
k6

0 0 0 0

0 k3
µ1

k4
µ1

k2
µ1

0 0 0

0 Mm Mm Mm 0 0 0
0 0 0 0 0 n2

µ2
0


,

where, Mh =
bmβ1(N

∗∗
h −N

∗∗
h −I

∗∗
s1−I

∗∗
s2−R

∗∗
h )

N∗∗
h

and Mm =
bmβ12(N

∗∗
m −E

∗∗
m −I

∗∗
m )

N∗∗
h

.

The notation (MZ̄)i (i = 1, 2, ..., 7) denotes the ith coordinate of the vector M(Z̄). Note that the matrix
M has non-negative entries, and the equilibrium Ē1 satisfies Ē1 = MĒ1. Moreover, since the coordinates of
the equilibrium Ē1 are all positive, it follows then that if Z̄ is a solution of (3.8), then it is possible to find a
minimal positive real number s, such that

|Z̄| ≤ sĒ1,

where, |Z̄| = (|Z1|, |Z2|, ..., |Z7|) and |.| is the norm in C.
Now, our goal is to show that Re(w) < 0. Assume the contrary (i.e., Re(w) ≥ 0), we consider two cases:

w = 0 and w 6= 0. For the first case (w = 0), the system (3.8) is a homogeneous linear system in the variables
Zi(i = 1, 2, ..., 7). The determinant of this system is given by

∆ =
β1bmI

∗∗
m (λ∗∗ + µ2)[k5k6k7(µ1 + η1) + β1bmI

∗∗
m {k6k7(pη1 + k5) + k5η1(1− p)(k1 + k6)}]

k5k6k7µ2(µ1 + η1)2N∗∗h

+
(µ1 + η1)N∗∗h [k5k6k7(µ1 + η1) + β1bmI

∗∗
m {k6k7(pη1 + k5) + k5η1(1− p)(k1 + k6)}]

k5k6k7µ2(µ1 + η1)2N∗∗h
> 0
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Thus, the system (3.8) has only trivial solution Z̄ = 0 for w = 0.
Now, we assume that w 6= 0 and Re(w) > 0. It is easy to see that in this case |1+Fi(w)| > 1 for i = 1, 2, ..., 7

and we define F (w) = min{|1 + Fi(w)|, i = 1, 2, ..., 7}, then F (w) > 1. Therefore, s
F (w) < s. Since s is the

minimal positive real number such that |Z̄| ≤ sĒ1,so

|Z̄| > s

F (w)
Ē1.

Taking norms on both sides of (3.8) and using the fact that M is non-negative, we obtain the following inequality

F (w)Z̄ ≤MZ̄ ≤ s(MĒ1) ≤ sĒ1.

Thus, it follows that Z̄ ≤ s
F (w) Ē1, which is a contradiction. Therefore, Re(w) < 0 and this proves that the EE,

Ē1, is locally asymptotically stable for <0 > 1.

3.4.3 Global Stability of EE

The global stability of EE of the model (2.6) is considered for a special case, where the ratio E∗∗h /Eh equals
to E∗∗m /Em. From the first six equations of the model (2.6), we see that

dSh
dt

+
dEh
dt

+
dIa
dt

+
dIs1
dt

+
dIs2
dt

+
dRh
dt

= π1 − µ1Sh − µ1Eh − µ1Ia − µ1Is1 − µ1Is2 − µ1Rh

or,
dNh
dt

= π1 − µ1Nh,

So, we have Nh(t) ≤ π1
µ1

for all t ≥ 0. To prove the global stability, we consider N∗∗h =
π1
µ1

for all t > 0. It is

easy to see that the above assumptions have no effect on the basic reproduction number <0 and the existence
of unique EE for <0 > 1. Now, we claim the following result.

Theorem 3. The unique EE, Ē1, of the model (2.6), is globally asymptotically stable in Ω for a special case,
E∗∗h /Eh = E∗∗m /Em, whenever <0 > 1.

Proof. Consider the non-linear Lyapunov function

F =

(
Sh − S∗∗h − S∗∗h ln

Sh
S∗∗h

)
+

(
Eh − E∗∗h − E∗∗h ln

Eh
E∗∗h

)
+
bmβ12S

∗∗
m

k5N∗∗h

(
Ia − I∗∗a − I∗∗a ln

Ia
I∗∗a

)
+
bmβ12S

∗∗
m

k7N∗∗h

(
Is1 − I∗∗s1 − I∗∗s1 ln

Is1
I∗∗s1

)
+
bmβ22k1S

∗∗
m

k6k7N∗∗h

(
Is1 − I∗∗s1 − I∗∗s1 ln

Is1
I∗∗s1

)
+
bmβ22S

∗∗
m

k6N∗∗h

(
Is2 − I∗∗s2 − I∗∗s2 ln

Is2
I∗∗s2

)
+

(
Sm − S∗∗m − S∗∗m ln

Sm
S∗∗m

)
+

(
Em − E∗∗m − E∗∗m ln

Em
E∗∗m

)
+
bmβ1S

∗∗
h

µ2N∗∗h

(
Im − I∗∗m − I∗∗m ln

Im
I∗∗m

)
and the Lyapunov derivative is given by

Ḟ =

(
1− S∗∗h

Sh

)
Ṡh +

(
1− E∗∗h

Eh

)
Ėm +

bmβ12S
∗∗
m

k5N∗∗h

(
1− I∗∗a

Ia

)
İa

+

(
bmβ12S

∗∗
m

k7N∗∗h
+
bmβ22k1S

∗∗
m

k6k7N∗∗h

)(
1− I∗∗s1

Is1

)
İs1

+
bmβ22S

∗∗
m

k6N∗∗h

(
1− I∗∗s2

Is2

)
İs2 +

(
1− Sm

S∗∗m

)
Ṡm

+

(
1− E∗∗m

Em

)
Ėm +

bmβ1S
∗∗
h

µ2N∗∗h

(
1− I∗∗m

Im

)
İm

(3.9)

For further simplification, we use the following relations
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π1 =
bmβ1S

∗∗
h I
∗∗
m

N∗∗h + µ1S∗∗h

π2 =
bmβ12S

∗∗
m I
∗∗
a

N∗∗h
+
bmβ12S

∗∗
m I
∗∗
s1

N∗∗h
+
bmβ22S

∗∗
m I
∗∗
s2

N∗∗h
+ µ2S

∗∗
m

(η1 + µ1)E∗∗h =
bmβ1S

∗∗
h I
∗∗
m

N∗∗h

(η2 + µ2)E∗∗m =
bmβ12S

∗∗
m I
∗∗
a

N∗∗h
+
bmβ12S

∗∗
m I
∗∗
s1

N∗∗h
+
bmβ22S

∗∗
m I
∗∗
s2

N∗∗h
pη1
k5

=
I∗∗a
E∗∗h

(1− p)η1
k7

=
I∗∗s1
E∗∗h

(1− p)η1k1
k6k7

=
I∗∗s2
E∗∗h

k1
k6

=
I∗∗s2
I∗∗s1

η2
µ2

=
I∗∗m
E∗∗m

Now, from equation (3.9), we obtain the following simplified form

Ḟ =
bmβ1
N∗∗h

(
3S∗∗h I

∗∗
m −

(S∗∗h )2

Sh
I∗∗m − S∗∗h

Em
E∗∗m

(I∗∗m )2

Im
− S∗∗h I∗∗m

Eh
E∗∗h

− ShIm
E∗∗h
Eh

+ S∗∗h I
∗∗
m

Em
E∗∗m

)
+
bmβ12
N∗∗h

(
3S∗∗m I

∗∗
a −

(S∗∗m )2

Sm
I∗∗a − S∗∗m

Eh
E∗∗h

(I∗∗a )2

Ia
− S∗∗m I∗∗a

Em
E∗∗m

− SmIa
E∗∗m
Em

+ S∗∗m I
∗∗
a

Eh
E∗∗h

)
+
bmβ12
N∗∗h

(
3S∗∗m I

∗∗
s1 −

(S∗∗m )2

Sm
I∗∗s1 − S∗∗m

Eh
E∗∗h

(I∗∗s1 )2

Is1
− S∗∗m I∗∗s1

Em
E∗∗m

− SmIs1
E∗∗m
Em

+ S∗∗m I
∗∗
s1

Eh
E∗∗h

)
+
bmβ22
N∗∗h

(
4S∗∗m I

∗∗
s2 − S∗∗m I∗∗s2

Eh
E∗∗h

I∗∗s1
Is2
− (S∗∗m )2

Sm
I∗∗s2 − S∗∗m

Is1
I∗∗s1

(I∗∗s2 )2

Is2
− S∗∗m I∗∗s2

Em
E∗∗m

− SmIs2
E∗∗m
Em

)
+
bmβ22
N∗∗h

S∗∗m I
∗∗
s2

Eh
E∗∗h

+ µ1S
∗∗
h

(
2− S∗∗h

Sh
− Sh
S∗∗h

)
+ µ2S

∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)
=
bmβ1S

∗∗
h I
∗∗
m

N∗∗h

(
3− S∗∗h

Sh
− Em
E∗∗m

I∗∗m
Im
− Sh
S∗∗h

Im
I∗∗m

E∗∗m
Em

)
+
bmβ12S

∗∗
m I
∗∗
a

N∗∗h

(
3− S∗∗m

Sm
− Eh
E∗∗h

I∗∗a
Ia
− Sm
S∗∗m

Ia
I∗∗a

E∗∗h
Eh

)
+
bmβ12S

∗∗
m I
∗∗
s1

N∗∗h

(
3− S∗∗m

Sm
− Eh
E∗∗h

I∗∗s1
Is1
− Sm
S∗∗m

Is1
I∗∗s1

E∗∗h
Eh

)
+
bmβ22S

∗∗
m I
∗∗
s2

N∗∗h

(
4− S∗∗m

Sm
− Eh
E∗∗h

I∗∗s1
Is1
− Is1
I∗∗s1

Is2
I∗∗s2
− Sm
S∗∗m

Is2
I∗∗s2

E∗∗h
Eh

)
+ µ1S

∗∗
h

(
2− S∗∗h

Sh
− Sh
S∗∗h

)
+ µ2S

∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)
Since the geometric mean does not exceed the arithmetic mean, it follows that

2− S∗∗h
Sh
− Sh
S∗∗h
≤ 0, 2− S∗∗m

Sm
− Sm
S∗∗m
≤ 0 3− S∗∗h

Sh
− Em
E∗∗m

I∗∗m
Im
− Sh
S∗∗h

Im
I∗∗m

E∗∗m
Em
≤ 0

3− S∗∗m
Sm
− Eh
E∗∗h

I∗∗a
Ia
− Sm
S∗∗m

Ia
I∗∗a

E∗∗h
Eh
≤ 0 3− S∗∗m

Sm
− Eh
E∗∗h

I∗∗s1
Is1
− Sm
S∗∗m

Is1
I∗∗s1

E∗∗h
Eh
≤ 0

4− S∗∗m
Sm
− Eh
E∗∗h

I∗∗s1
Is1
− Is1
I∗∗s1

Is2
I∗∗s2
− Sm
S∗∗m

Is2
I∗∗s2

E∗∗h
Eh
≤ 0
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Therefore, we have Ḟ ≤ 0 for <0 > 1. Thus, by the lyapunov function F , and the LaSalle Invariance Principle
[47], every solution to the equations in the model (2.6) approaches Ē1 as t→∞ for <0 > 1.

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Simulations of the model (2.6) showing the total number of infected human population (Eh + Ia +
Is1 + Is2) as a function of time when <0 > 1, using various initial conditions. Parameter values used as given
in Table 4.2 with π1 = 332.5;π2 = 75500; bm = 0.6; p = 0.15;β12 = 0.35; (a)β22 = 0, without treatment, and
<0 = 1.21; (c)β22 = 0.005, without treatment, and <0 = 1.33; (e)β22 = 0.005, with treatment, and <0 = 1.05.
And (b), (d), (f) depict the corresponding total number infected mosquito population (Em + Im).
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4 Numerical simulations

Simulations of the model (2.6) presented in Figure 3.1 and Figure 3.2 show that the DFE and EE are stable
for different parameter values with the threshold quantity <0 < 1 and when <0 > 1 respectively. Therefore, if
the disease burden reduces <0 to less one then the infected population will be eliminated and in contrast, when
<0 > 1 the disease will persist in the population. So, some measure should be taken to alleviate or eliminate the
disease. Now, we investigate the effect of treatment of different population class and also analyse the sensitivity
of the decease burden to the various parameters in the following two subsections.

4.1 Efficacy of treatment

Medicine of chikungunya is not available commercially. An experimental vaccine in an early stage of clinical
trial. But we are interested to analyze effectiveness of treatment of the infected individuals by determining
the impact of treatments on the threshold number <0. Figure 4.1 depicts the profile of <0 as a function of
treatment rates ρ1, ρ2, σ1, and σ2. When β22 = 0, Figure 4.1(a) shows that the treatment of symptomatically
infected individuals and asymptomatically infected individuals reduces the quantity <0 to less than unity but
the treatment in class Is1 is more effective and that of has no impact to infected individuals in sub acute
phase. If the infected individuals at subacute phase are considered as infectious, Figure 4.1(b) reveals that the
treatment of individuals in this class has a significant impact to reduce the disease burden.

(a)

(b)

Figure 4.1: Reproduction number <0 as a function of treatment rates ρ1 or ρ2 or σ1 or σ2. Parameter values
used as given in Table 4.2 with (a) π1 = 2.2, π2 = 15000, β22 = 0, and (b) π1 = 1.8, π2 = 8500, β22 = 0.005.
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4.2 Sensitivity Analysis

Sensitivity analysis is performed on the parameters of a model to determine which of the parameters play
vital role in the dynamics of the model [36]. We calculate the sensitivity indices of the basic reproduction
number (<0) to the parameters in the model (2.6), to determine which of the parameter have high impact on
<0, and consequently to the disease transmission. We follow the approach as in [37]. The normalized sensitivity
indices of <0 on parameter Pi is given by

I<0

Pi
=
∂<0

∂Pi

Pi
<0
.

Sensitivity indices of <0 are calculated at the parameter values as in Table 4.2 and the results are presented
in Table 4.1, where second column corresponds to the case when ρ1 = 0, ρ2 = 0, σ1 = 0, σ2 = 0, and the third
column for ρ1 = 1/15, ρ2 = 1/15, σ1 = 1/15, σ2 = 1/15.
In general, when one of the parameters with positive sign increases (or decreases) while the other parameters are
constant, the value of <0 increases (or decreases). For example, increasing β1 by 10% increases 0.5×10% of <0.
Table 4.1 shows that the most important cruicial parameters are mosquito mortality rate (µ2), mosquito biting
rate (bm). Other important parameters are disease transmission probability rate from infectious mosquito to
susceptible human (β1), human recruitment rate (π1), mosquito recruitment rate (π2), human mortality rate
(µ1), disease transmission probability rate from infectious human to susceptible mosquito (β12) and (β22), and
recovery rates (γ2, γ1 and r2).

Table 4.1: Sensitivity indices of <0 to parameters for the model (2.6), evaluated at the parameter values given
in Table 4.2.

Parameter Sensitivity Indices without Treatment Sensitivity Indices with Treatment
(ρ1 = ρ2 = σ1 = σ2 = 0) (ρ1 = ρ2 = σ1 = σ2 = 1/15)

π1 −0.5 −0.5
π2 0.5 0.5
µ1 0.49942 0.49988
µ2 −1.06667 −1.06667
bm 1.00002 1.00002
p 0.0706 0.08623
η1 0.00006 0.00006
η2 0.06667 0.06667
β1 0.5 0.5
β12 0.36905 0.46907
β22 0.13095 0.03093
γ1 −0.11351 −0.08699
γ2 −0.19322 −0.150963
r1 −0.06227 −0.12589
r2 −0.13049 −0.00442
ρ1 ... −0.04059
ρ2 ... −0.03522
σ1 ... −0.02937
σ2 ... −0.02649

5 Conclusion

In this research, a new deterministic model for the dynamics of chikungunya virus transmission is formulated
and analyzed rigorously. It has been shown that the model is mathematically and epidemiologically well-
posed and it has a locally-asymptotically stable disease free equilibrium (DFE ) when the basic reproduction
number <0, which is derived by next generation matrix method, is less than unity. The DFE is also globally-
asymptotically stable, which is established by Lyapunov function and LaSalle Invariance Principle whenever
<0 < 1. Also, when <0 > 1, there exists a unique endemic equilibrium (EE ) of the model. Local stability of
the EE is shown by sublinearity trick when <0 > 1 and the global stability of EE is proved by using nonlinear
Lyapunov function and LaSalle Invariance Principle for a special case whenever the threshold, <0 is greater
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Table 4.2: Value of the parameters of the model (2.6) for simulation. Most of the parameter values are obtained
from entomologists researches on Aedes sp. and chikungunya.

Parameters Base Line Value Range Reference
π1 1.2 V ariable —
π2 1800 V ariable —
1/µ1 70× 365 [43]
1/µ2 13 [7, 42] [9, 38]
bm 0.4 [0.1, 1] [9, 38]
β1 0.35 [0.001, 0.8] [9, 38, 6]
β12 0.35 [0.005, 0.9] [9, 38, 6]
β22 0.005 [6]
1/η1 3 [1, 12] [9, 10]
1/η2 2 [2, 4] [5]
1/γ1 7 [3, 7] [41]
1/γ2 0.5× 7 0.5/γ1 [10]
1/r1 0.5× 7 0.5/γ1 [10]
1/r2 90 [14, 280] [10]
ρ1, ρ2, σ1, σ2 1/15 [19]
p 0.1 [0.03, 0.28] [39]

than unity. Numerical simulations of the model for different parameter values and initial conditions verify
these mathematical analysis for both the cases <0 < 1 and <0 > 1. Further, simulation of the model has been
suggested that the treatment of symptomatically infected individuals and asymptomatically infected individuals
can reduce the disease burden but the treatment of infected individuals in acute phase is more effective and that
of has no impact of infected individuals in sub acute phase when they are not infectious. Also the sensitivity
analysis has been revealed that the most effective parameters are mosquito mortality rate and average biting rate
. So, the reduction of average life spans of mosquito and prevention against the effective contact with infectious
mosquitoes would be effective control strategy. So, during the outbreak of the disease, insects repellents can
be used to prevent the mosquito bites. Also the mosquito bed nets, which are available in market, can protect
from mosquito biting. Transmission probability rates are also important parameters, reducing the value of these
parameters can curtail the disease burden. Human and mosquito recruitment rates have great significance on
controlling the disease so destruction of breeding sites of mosquito may be better prevention to the disease.
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ABSTRACT

Of concern in the paper is a numerical study of endovascular drug delivery in a patient-specific atheroscle-
rotic artery through a mathematical model in which the luminal flow is governed by an incompressible vis-
cous Newtonian fluid, and the transport of luminal as well as tissue concentration is modeled as an unsteady
convection-diffusion process. An image processing technique has been successfully adopted to detect the edges
of the computational domain extracted from an asymmetric (about the centerline of the artery) patient-specific
atherosclerotic artery. Considering each pixel as a control volume, the Marker and Cell (MAC) method has
been leveraged to get a quantitative insight of the model considered by exploiting physiologically realistic ini-
tial, boundary as well as interface conditions. Simulated results reveal that the number as well as the length
of separation zone does increase with increasing Re, and the near-wall velocity contour might be important for
estimating the near-wall residence time for the pool of drug molecules available for tissue uptake. Results also
show that the more the tissue porosity and interface roughness do not necessarily imply the more the effective-
ness of delivery, even though they enhance the averaged concentration in the tissue domains, and also the area
under concentration diminishes with increasing Peclet number. Thus, the tissue porosity, the Peclet number
and various geometrical shapes (interface roughness) play a pivotal role in the dispersion and the effectiveness
of drug delivery.
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1 Introduction

Constriction in an artery occurs due to the accumulation of low-density lipoprotein (LDL) and other macro-
molecules and/or the proliferation of smooth muscle cells (SMCs) present in tunica media along the inner lining
of the arterial wall. The formation of such constriction or plaque (stenosis) starts blocking the artery and
reduces the normal flow of blood, medically termed as ‘atherosclerosis’[1]. The study of disturbances arising out
of atherosclerotic flow together with its control is a much-researched topic for the last few decades, however,
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the convection as well as diffusion-driven transport of drug in a patient-specific atherosclerotic artery has been
paid less attention, perhaps due to its inherent complexity in the geometry. During intravenous delivery into
an atherosclerotic artery, clinicians are interested to analyze how the luminal drug is dispersed with the flowing
blood and its subsequent uptake into the arterial tissue, and also the tissue content for the better efficacy of
the delivery.

A large volume of work on the transport of luminal concentration (solute) in the presence of an absorbing wall
(lumen-wall interface) has already been carried out, both theoretically and/or numerically, in various domains
of interest [2, 3, 4, 5, 6, 7, 8, 9]. Taylor [2] and Aris [3] studied the solute dispersion in steady flow through a
circular tube. Gill and Sankarasubramanian [4] carried out the exact analysis of an unsteady convection-diffusion
process. In their study, a fully developed steady laminar flow and the dispersion of an injected solute in each
time without interphase mass transfer across boundaries were analyzed. A more rigorous generalization was
derived by taking the key attributes of solute transfer in the presence of an absorbing boundary [5]. The effect
of wall absorption on shear dispersion in plane and pipe flows was successfully studied by Smith [6]. Purnama
[7] considered the dispersion of solute between a moving region and adjoining immobile medium. Dash et al. [8]
explored the effect of yield stress on solute dispersion in Casson fluid flow. The study of Sarkar and Jayaraman
[9], taking annular and axisymmetric oscillatory flow consecutively into account, was based on irreversible
boundary reaction on the dispersion of solute. Nagarani et al. [10] analyzed the dispersion process in a tube
in the presence of a catheter. The investigation on the mass transport contemplated a steady Poiseuille flow
through a circular tube considering reversible and irreversible reactive boundary condition [11]. In the presence
of reversible and irreversible wall reaction in an annular tube with an oscillatory flow, Mazumder and Paul [12]
analyzed the longitudinal dispersion following Aris’s method of moments. Rana and Murthy [13, 14] analytically
determined the transport coefficients with the help of Gill’s generalized dispersion model and discussed the effect
of yield stress, wall reaction, Womersley parameter and flow pulsatility on the dispersion of solute in a tube and
in two-phase flow respectively. Three layers of fluid having non-Newtonian Casson model in the middle layer
were considered to investigate the effect of yield stress, the thickness of the layer and wall reaction on solute
transport using the Aris-Barton method of moments by Debnath et al. [15].

In all the studies cited above, studies on the solute transport were restricted only in the luminal region. It
is surprising to know that the transport of solute in the lumen as well as in the tissue is not well documented so
far. Few studies have considered the transport of solute followed by its absorption at the lumen-tissue interface
in an idealized (non-realistic and smooth having no surface roughness) wall [16, 17]. In a theoretical study,
Griffiths et al.[16] made an attempt to optimize the mass transport in a thin porous tube. Since the therapeutic
domain is an atherosclerotic artery, Das et al. [17] successfully simulated the dispersion of solute in an idealized
stenotic artery. They showed that the dispersion of solute in the lumen and the tissue is directly related to
the yield stress, the wall absorption parameter and the severity of the stenosis. It is well established that the
uptake of solute from the luminal side depends on the near-wall velocity gradient. Some studies showed the
alteration of flow characteristics in presence of surface irregularities by disregarding the solute transport in the
tissue [18, 19, 20, 21, 22, 23, 24]. These studies, though less flexible, are still of relevance to establish the effects
of roughness on solute transport. Studies related to drug delivery in various geometries have been successfully
carried out in the recent past [25, 26, 27].

Relatively very little is known about the drug transport in the vicinity of a realistic atherosclerotic artery.
An issue of central interest in the present study is the consideration of irregular lumen-tissue interfaces which
promote multi-directional drug uptake from the luminal side as opposed to the smooth interface. In this work, a
longitudinal image of an asymmetric patient-specific atherosclerotic arterial segment obtained from intravascular
ultrasound (IVUS) is taken into consideration [28]. An image processing technique was successfully applied to
obtain the outlines of the computational domain [29]. For a quantitative insight of this coupled fluid-drug
transport model considering the continuity of flux and concentration as the lumen-tissue interface, the well-
known Marker and Cell method is leveraged [30] where each pixel of the longitudinal image is considered as a
control volume. It may be recorded that this asymmetric geometry consisting varying irregularities at the upper
and lower interfaces contributes much to the varying uptake of drug therein. Our study differs considerably from
the studies cited above by taking additional consideration of an unsteady drug transport in tissue domains having
varying lumen-tissue interface roughness in the upper and lower domains. The transport of drug molecules with
the streaming blood in the lumen after injected at the luminal inlet and its subsequent uptake at the irregular
lumen-tissue interface followed by diffusion in the tissue is relevant in the study of arterial pharmacokinetics.
The objective of the present computational study is to investigate the convective and diffusive transport of drug
in an irregular asymmetric patient-specific atherosclerotic artery and to estimate various physiological factors
like velocity, wall shear stress, pressure drop, streamlines, concentration in their respective irregular domains as
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well as the effectiveness of delivery. The novelty of the present study lies in the inclusion of a patient-specific
asymmetric atherosclerotic artery with varying irregularities at the lumen-tissue interfaces and the dispersion
of the drug molecules in the lumen and tissue in general, and the choice of solute administration at the luminal
inlet for three different geometrical models which more closely resembles the physiological situation relevant to
intravenous drug delivery. The possible implications of the results are discussed.

2 Formulation of the Problem

2.1 Geometry Reconstruction

The three different models of an atherosclerotic vessel shown in Fig. 1 (a-c) have been examined. The ‘Orig-
inal’ shape considered here is the patient-specific asymmetric model (Fig 1(c)) [28]. The ‘Toy’ model considered
is a much simpler smooth version of the original shape (Fig. 1(a)). Finally, by gradually adding interface rough-
ness to the toy model, a new stenosis model, termed as ‘Smooth’ model, is obtained which exhibits the same
general form as the original model with few surface roughness elements are present (Fig. 1(b)). The computa-
tional domain for the original model was constructed from a single, patient-specific asymmetric arterial vessel
obtained from König and Klauss [28]. In this case, intravascular ultrasound (IVUS) imaging was performed to
obtain a longitudinal cross-section of the vessel followed by virtual histology on the derived image to identify
the outlines of the computational domain. An image segmentation technique was leveraged to automatically
identify different outlines of the image [29]. IVUS is a tomographic imaging tool that allows visualization of
atherosclerosis, its length and area, plaque compositions and coronary remodeling. The motivation of select-
ing this image is simply due to its availability and it allows us to define boundary and interface conditions
straightforwardly. We limited our formulation in a two-dimensional geometry of an asymmetric
patient-specific atherosclerotic artery due to its availability in the literature [28].

2.2 Governing Equations

Although blood, being a suspension of enumerable corpuscles, behaves like a non-Newtonian
fluid while flowing through smaller vessels, but in larger arteries, the rheology of the streaming
blood may be treated as Newtonian [31]. In our study, the luminal blood flow is treated as
unsteady and two-dimensional which is characterized by Newtonian model. The dimensionless
governing equations representing the trasport of momentum (eqns. 1,2) and conservation of mass (eqn. 3) for
viscous incompressible fluid in Cartesian coordinates system (x, y) may be written in the conservative form as

∂u

∂t
+
∂(uv)

∂y
+
∂u2

∂x
= −1

ρ

∂p

∂x
− 1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.1)

∂v

∂t
+
∂v2

∂y
+
∂(uv)

∂x
= −1

ρ

∂p

∂y
− 1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.2)

∂u

∂x
+
∂v

∂y
= 0, (2.3)

where x and y are the dimensionless coordinates, scaled with respect to the proximal diameter d of the artery
with the x axis placed along the centreline of the asymmetric artery, u and v are the axial and the transverse
components of dimensionless velocity scaled with the centreline velocity U0 respectively. Here, ρ represents the
density of flowing blood and µ, the viscosity coefficient. The dimensionless time (t), the pressure (p) may be
defined as

t =
U0t

∗

d
, p =

p∗d

µU0
.

Here, Re(= ρUod
µ ) stands for the Reynolds number.

The respective convection-diffusion equations representing the transport of drug in the domains considered,
namely, the lumen, the upper tissue and the lower tissue, may be written in dimensionless forms as

∂cl
∂t

+ u
∂cl
∂x

+ v
∂cl
∂y

=
1

Pel

(
∂2cl
∂x2

+
∂2cl
∂y2

)
, (2.4)

∂ctu
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Petu

(
∂2ctu
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+
∂2ctu
∂y2

)
, (2.5)
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∂ctl
∂t

+ Vfilt
∂ctl
∂y

+ =
1

Petl

(
∂2ctl
∂x2

+
∂2ctl
∂y2

)
, (2.6)

where the volume-averaged concentrations of free drug in the lumen(cl), in the upper tissue(ctu) and in the lower
tissue(ctl) are scaled with respect to the inlet concentration c0. Here, Vfilt(=

vfilt
Uo

) represents the dimnesionless

tranmural filtration velocity in the upper and lower tissue regions and Pel(=
U0d
Dl

),Petu(= U0d
Dtu

), Petl(=
U0d
Dtl

)
stand for the Peclet number for the lumen, the upper tissue and the lower tissue respectively, with the diffusion
coefficients Dl in the lumen, Dtu in the upper tissue, Dtl in the lower tissue.

2.3 Initial, Boundary and lumen-tissue Interface Conditions

An asymmetric velocity profile at the inlet(Γi) may be taken as

u =
(y −Ru)(y −Rl)

(Rm −Ru)(Rm −Rl)
, v = 0 on Γi, (2.7)

where Ri (i = u, l) be the proximal lumen radii (upper and lower) of the arterial segment and Rm(= Ru+Rl
2 ) is

the mean radius at the luminal inlet.
At the downstream (Γo), the flow is left free which is mathematically represented by

∂u

∂x
= 0 =

∂v

∂x
on Γo. (2.8)

At the lumen-tissue interfaces (Γui ,Γ
l
i), the usual no-slip condition of velocity-vector is given by

u = 0 = v on Γui ,Γ
l
i. (2.9)

At the proximal(Γup ,Γ
l
p) and distal (Γud ,Γ

l
d) boundaries of the tissue domains, the no flux conditions for free

drug are as follows:

∂ctu
∂x

= 0 on Γup ,Γ
u
d , (2.10)

∂ctl
∂x

= 0 on Γlp,Γ
l
d. (2.11)

At the perivascular end(Γu,Γl), a perfectly sink condition may be written mathematically as [16]

ctu = 0 on Γu, (2.12)

ctl = 0 on Γl. (2.13)

At the lumen-tissue interfaces (Γui ,Γ
l
i), the continuity of drug concentrations and fluxes are assumed whose

mathematical representations are as [16]

ctu = cl and
∂cl
∂n

= α1
∂ctu
∂n

on Γui , (2.14)

ctl = cl and
∂cl
∂n

= α2
∂ctl
∂n

on Γli, (2.15)

where n is the transmural unit normal vector, α1 = φDtuDl and α2 = φDtlDl
; φ designates the porosity of the tissue

medium. Due to nonavailability of data, equal porosity and equal diffusivity for both the tissue regions have
been assumed, and hence we assume, in the sequel, α1 = α2 = α. Initially, it is assumed that there is no drug
inside the domains (lumen and tissue), except the dimensionless concentration of injected drug at the luminal
inlet is constant (unity). Therefore,

cl = 1 at x = 0, ∀t and cl = ctu = ctl = 0, elsewhere, at t = 0 (2.16)
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3 Method of Solution

3.1 The MAC Methodology

The governing equations along with the physiologically realistic conditions are solved numerically by a finite-
difference method in staggered grids. The computational geometry is comprised of 71,876 pixels encompassing
the patient-specific atherosclerotic vessel where each pixel is considered as a control volume (Fig. 2). Concerning
the second order spatial accuracy of the boundary conditions, some fictitious grid points outside the domain
have been taken into consideration. Here, we set xi = iδx, yj = jδy and tk = kδt in which k refers to the time
direction, δt, the time increment. Here, δx and δy are the dimensions of the pixels. The discretized versions of the
governing equations are not given here, for the sake of brevity, however, the interested readers may be referred
to [32]. The discretized equation for calculating pressure-field as obtained from the discretized momentum and
continuity equations is solved by Successive-over-Relaxation(SOR) method ehere the value of over-relaxation
parameter is 1.2. Using the principle of conservation of mass, we calculate the divergence of the velocity-field
at each cell and check for its prescribed tolerance. If the divergence does not satisfy the tolerance limit, then
the pressure and velocity components are corrected. The discretized versions of the governing equations are not
given here, for the sake of brevity, however, the interested readers may be referred to [32]. The computational
code has successfully been programmed in FORTRAN language.

3.2 Pressure and velocity correction

To reduce the computational cost for each cycle, we limit the number of iterations in the S.O.R scheme to
10 to get pressure-field. So the velocity-field obtained using this inaccurate pressure-field will not, in general,
satisfy the continuity equation which prompts us to correct the pressure as well as velocity-field. If the cell-
divergence is found to be greater than the prescribed tolerance value (10−8) at any cell in an absolute sense, the
pressure and, subsequently, the velocity components are immediately corrected at each cell using the formulae
below:

pki,j = p∗i,j + ωδpi,j ,

where δpi,j =
−Div∗i,j

2δt
(

1
δx2

+ 1
δy2

) , p∗i,j is the obtained pressure from the Poisson equation using limited iterations,

ω(≤ 0.5) represents the relaxation parameter for S.O.R. scheme and Div∗i,j stands for derived divergence of the

velocity-field at (i, j)th cell.

uk+1
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δx

,
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δx

,

vk+1
i,j = v∗i,j +

δtδpi,j
δy

,

uk+1
i,j−1 = u∗i,j−1 −

δtδpi,j
δy

,

where u∗i,j , u
∗
i−1,j , v

∗
i,j , v

∗
i,j−1 stand for the updated velocity-field.

3.3 Numerical Stability: Time-Stepping Procedure

Welch et al.[33] suggested the stability criterion by imposing restriction on time step (δt1) involving Reynolds
number as

δt1 ≤ Min

(
Re

2

δx2δy2

δx2 + δy2

)
i,j

(3.1)

This condition for stability is related to viscous effect which can be applied directly in order to select an
appropriate time step [34].

Another approach for stability criterion is that no fluid particles should cross more than one cell boundary
in a given interval of time (δt2) (Markham and Proctor [35]), which may be written mathematically as

δt2 ≤ Min

(
δx

|u|
,
δy

|v|

)
i,j

(3.2)
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Courant-Friedrichs-Lewy (CFL) stability criteria [38] based on various diffusivities of the drug and dimension
of the control volume provide the time step (δt3).

Finally, the variable time step (δt) to be applied at a given point in the calculation will be

δt = d1Min (δt1, δt2, δt3) , (3.3)

where the reason for this extra factor d1, (0 < d1 ≤ 1) is to reduce the computational cost [35].

4 Numerical Results and Discussion

The computational domain is considered of non-dimensional length of 8.5 in which extra non-stenotic lengths
at the upstream and downstream are added in a bid to justify the boundary conditions assumed at the proximal
and distal end of the arterial segment. The computational domain is comprised of 71,876 pixels encompassing
a patient-specific asymmetric atherosclerotic vessel where each pixel is considered as a control volume. Steady
states have been achieved when the divergence of the velocity-field was less than 10−8 and a reduction of
5.0×10−7 in the solute transport residual. For simulation purposes, the following plausible baseline values have
been made use of [4, 18, 36, 37]:
Re = 300, P el = 1000, P etu = 10000, P etl = 10000, α = 0.1, Vfilt = O(10−6)

4.1 Model Validation

Direct validation of our model with ones available in the literature is almost impossible as, to the authors’
knowledge, not a single article is available in the literature which accounts for the mass and momentum transport
in the domains considered, however, a sincere attempt is made in Figure 3 to qualitatively compare the variation
of normalized pressure drop with Reynolds number. The pressure drop is computed across the patient-specific
irregular stenosis, and one can easily verify from Fig. 3 that the obtained result does significantly differ from
those of [18, 22] who studied the model in cylindrical coordinates system with different plaque geometry, but
a similar trend is observed that the predicted pressure drop decreases with increasing Reynolds number. The
distinction among these findings is certainly due to the length, the severity and the different irregularities of
atherosclerotic plaque considered herein.

4.2 Velocity Contour, Wall Shear Stress and Streamlines

The effect of Reynolds number on the vorticity contours of the flow characteristics in an asymmetric patient-
specific atherosclerotic vessel can be recorded from the results of Figure 4. The velocity profiles at the throats
are significantly distorted as shown in these patterns. These distortions span downstream with increasing Re.
The velocity contours have some interesting features to note that the magnitude of the velocity in the vicinity
of the plaque is negative indicating the existence of flow separation regions at those sites and the area of the
regions having negative velocity does increase with increasing Re. The correct prediction of the near-wall velocity
contour might be important for estimating near-wall residence time for the pool of drug molecules available for
tissue uptake. Thus the flow velocity (specifically near the wall) contributes much to the uptake of drug from
the luminal side.

The wall shear stress plays a significant role in the genesis and progression of atherosclerosis. The variations
of the wall shear stress along the asymmetric as well as irregular vessel for the upper and lower walls for different
Re are portrayed in Figure 5(a-b) respectively. The multiple peak values of the wall shear stress occur at the
multiple throats of the stenosis and the maximum value is noted where the arterial narrowing is maximum, and
also, this peak value increases with increasing Re. It may also be noted that the number, as well as the length of
recirculation/ separation region, do increase with increasing Re which may have a pivotal role for the aggravation
of the disease (cf. Figs. 6). It is also interesting to note that the number as well as the length of separation
zone increases in the upper wall as compared to the lower wall due to more interface irregularities present in
the upper interface. Hence, proper importance should be given to the interface irregularities in the context of
the atherosclerotic lesion. The elevated wall shear stress is responsible for endothelial damage and activates
cellular proliferation mechanism too, and the complex separation regions are responsible for the aggregation
sites of macromolecules as opined by Asakura and Karino [39]. The results of Figure 6(a-c) showing patterns of
streamlines for an irregular atherosclerotic plaque for different Re clearly indicate that the streamlines are less
perturbed for Re = 100, however, with an increase of Re, the formation of several complex recirculation regions
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is observed due to an increase fluid inertia which is responsible for the establishment of an adverse pressure
gradient. This adverse pressure gradient does reverse the flow. The figure also highlights that the streamlines at
the lower wall are less perturbed as compared to the upper wall for a particular Re which is due to less surface
roughness present in the lower wall. This, however, at least describes quantitatively what happens for flows in
blood vessels when the inertia is important. Thus, based on the patterns of the streamlines, one may conclude
that the irregularity of the inner lining of the vessel wall affects the streamlines significantly and hence proper
importance should be given to the irregular stenosis model in the context of atherosclerotic lesion.

4.3 Effect of diffusivity (Peclet number), tissue porosity (α) and interface rough-
ness on drug dispersion

Figure 7(a-c) exhibits the distributions of local drug concentrations in the axial direction of the atherosclerotic
artery at three distinct transluminal positions, namely, y = 0.2 for lumen, y = 1.15 for upper tissue and
y = −1.15 for lower tissue, while Figure 8(a-c) displays the spatiotemporal patterns of drug concentration for
the whole domain (lumen as well as tissue). Figure 7a shows that the value of the luminal concentration for
different luminal Peclet numbers (Pel) starts from one due to all-time constant value (cl = 1, eq. 2.16) at
the inlet, and thereafter increases followed by a gradual decline at the downstream. Figures 7(b-c) gives an
idea on how the local concentration is perturbed for different tissue Peclet numbers (Petu, P etl). This figure
establishes the fact that the drug concentration reduces significantly with the increasing Peclet number. One
interesting feature may be noted that the concentration profiles reveal asymmetric distribution between regions
distal and proximal to the plaque due to the convective nature of drug transport as well as varying thickness
and roughness of the domains. Simulations predicted that recirculation regions create pockets of stagnant drug-
laden blood that allow more drug accumulation at lumen-tissue interfaces, and eventually more uptake of drug
from the luminal side into the arterial tissue [32]. All these findings are in conformity with the spatiotemporal
patterns of drug concentration as depicted in Figure 8(a-c). Here too, the concentration of drug diminishes, more
specifically, the area under concentration (AUC) diminishes with increasing Peclet number, and the penetration
of drug into the tissue domains is more from the sites of recirculation regions and the more the thickness of the
domains, the less the concentration at a particular instant of time.

Temporal variations of averaged concentration of drug for different values of Peclet number and tissue
porosity for the upper and lower tissue regions are sketched in Figure 9(a-b) respectively. It is found that the
averaged concentration increases from zero, thereafter reaches a steady state with the advancement of time.
It is worthwhile to note that the averaged tissue concentration reaches its quasi-steady state more quickly for
lesser Peclet number (i.e. for higher diffusivity). As anticipated, the averaged concentration decreases with
the increase of Peclet number. Moreover, as the porosity in the tissue α (= φDtuDl = φDtlDl

) increases from
0.05 to 0.1, the averaged concentration of drug in both the tissue domains increases which may be justified in
the sense that with the increase of porosity in the tissue, the diffusive flux of luminal concentration into the
tissue domain increases, which in turn, diminishes the luminal concentration (cf. Fig. 11(a-c)) and enhances the
averaged concentration in the arterial tissue. The averaged concentrations of drug for three different geometrical
models (Toy model having no interface roughness, smooth model having few interface roughness and original
model having much roughness; cf. Sec. 2.1, Fig. 1(a-c)) for the upper and lower tissue regions are depicted in
Figure 10(a-b). The three models differ from each other in terms of interface roughness, and eventually, the
length of the interface of the domains changes as the more the roughness present at the interface, the more the
lumen-tissue interface length. The curves from both figures are analogous in nature. It is to be noted that the
concentration is all-time lower for the toy model, as compared to the smooth and original model for both the
tissue domains. This observation makes sense that the smaller interface roughness (interface length) for the toy
model gives rise to lesser absorption of drug in the tissue and hence, it may be concluded that the more the
interface roughness, the more the absorption of drug, and finally, the more the averaged concentration in the
tissue.

4.4 Effect of diffusivity (Peclet number), tissue porosity (α) and interface rough-
ness on the effectiveness of delivery

Following Saltzman [40], the effectiveness of delivery in the target tissue is defined as the ratio of the averaged
concentration and maximum concentration. He also opined that the higher value of this ratio implies good
effectiveness. Figure 12(a-b) depicts the influence of the Peclet number (diffusivity) and the tissue porosity (α)
on the effectiveness of endovascular drug delivery for upper and lower therapeutic domains over time respectively.
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As anticipated, the effectiveness of delivery diminishes with increasing Peclet number, which is in tune with
the averaged concentration for various Peclet numbers (cf. Fig. 9), but a reverse trend is observed in case of
varying porosity. Although the averaged concentration increases with increasing tissue porosity in the upper
and lower tissue regions, the effectiveness of delivery decreases. Figure 13(a-b) exhibits the effect of geometrical
shape, i.e., interface roughness or interface length on the effectiveness of endovascular drug delivery. Simulated
results show that the effectiveness of drug delivery diminishes with increasing interface roughness as opposed
to the averaged concentration in both the tissue domains (cf. Fig 10). This observation may be justified in
the sense that with the increase of tissue porosity and the interface roughness, the averaged concentration in
the tissue domains does increase, but the higher porosity and roughness implying higher tissue uptake of the
injected drug give much higher maximum concentration in the tissue, and eventually, the ratio (effectiveness)
decreases.

5 Conclusion and future direction

Endovascular delivery through a patient-specific atherosclerotic arterial segment has been considered in the
present study. The drug which is transported with the luminal flow and its subsequent uptake into the porous
tissue regions clearly resemble intravenous delivery in a realistic situation. Image processing technique has
been successfully used to determine the boundary of the domain of study. The luminal fluid is
modeled as an incompressible Newtonian fluid governed by Navier-Stokes equations. The transport of drug in
the lumen and tissue domains are modeled as an unsteady advection-diffusion process. Considering each pixel
as a control volume, the Marker and Cell (MAC) method has been leveraged to get a quantitative insight of
the model considered by exploiting physiologically realistic initial, boundary as well as interface conditions.
Simulated results predict that the number as well as the length of separation zones increases with increasing
Re and the near-wall velocity contour plays a pivotal role for estimating the residence times for the pool of
drug molecules available for tissue uptake. One interesting phenomenon may be noted that although the tissue
porosity and the interface roughness do enhance the averaged concentration of drug in both the tissue domains,
it may not enhance the effectiveness of delivery. Hence, the porosity as well as the interface roughness of the
asymmetric therapeutic domains play a pivotal role in the dispersion and the effectiveness of drug delivery.

To model endovascular drug delivery in a complex physiological system is an uphill task, still a sincere
attempt is made to study such a problem in a tractable form by making a lot of assumptions. Our model did
not consider the rheological effects on dispersion. The consideration of the retention of drug in the therapeutic
domains together with its endocytosis (internalization) in the heterogeneous compositions of the plaque may be
taken into account in our future endeavor. We intend to revisit these topics mentioned in this section as part
of our future research.
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(a) (b)

(c)

Figure 1: Computational domain, (a) Toy model, (b) Smooth model, (c) Original model, outline of the geometry
derived from an IVUS image of a patient-specific atherosclerotic artery [28].

Figure 2: A typical MAC cell
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Figure 3: Comparison of normalized pressure drop across an irregular stenosis.

(a) (b)

(c)

Figure 4: Longitudinal velocity contour, (a)Re = 100, (b)Re = 300, (c) Re = 500.

(a) (b)

Figure 5: Variation of the wall shear stress along asymetrical atherosclerotic stenosis, (a) upper tissue, (b) lower
tissue.
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(a) (b)

(c)

Figure 6: Variation of streamlines,(a)Re = 100, (b)Re = 300, (c)Re = 500.

(a) (b)

(c)

Figure 7: Axial variation of the local concentration of drug for different Peclet numbers, (a) lumen at y = −0.2,
(b) upper tissue at y = 1.15, (c) lower tissue at y = −1.15.
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(a) (b)

(c)

Figure 8: Spatiotemporal variation of drug concentration for different Peclet numbers (Petu = Petl = 10×Pel),
(a) Pel = 500, (b)Pel = 1000, (c) Pel = 2000.

(a) (b)

Figure 9: Temporal variation of dimensionless averaged concentration for different Peclet numbers and porosities,
(a) upper tissue, (b) lower tissue.
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(a) (b)

Figure 10: Temporal variation of dimensionless averaged concentration for various geometrical models (Pel =
1000, P etu = Petl = 10000, Re = 300, α = 0.1), (a) upper tissue, (b) lower tissue.

(a) (b)

(c)

Figure 11: Spatiotemporal variation of drug concentration for different porosities (Pel = 1000, P etu = Petl =
10000), (a) α = 0.01, (b) α = 0.05, (c) α = 0.1.
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(a) (b)

Figure 12: Influence of Peclet number and porosity on the effectiveness of delivery, (a) upper tissue, (b) lower
tissue.

(a) (b)

Figure 13: Influence of surface roughness on the effectiveness of delivery (Pel = 1000, P etu = Petl = 10000, Re =
300, α = 0.1), (a) upper tissue, (b) lower tissue.
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OBITUARY

Professor Md. Anwar Hossain (25 April 1943 - 27 May 2021) was a Bangladeshi mathematician and a legend
of computational fluid dynamics. He was a professor of mathematics at the University of Dhaka, a Fellow of
the Bangladesh Academy of Sciences. He was also a Senior Associate of the Abdus Salam International Center
for Theoretical Physics (ICTP), Italy.
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1 Early Life and Education

Dr. Md. Anwar Hossain was born on 25 April 1943 in Chandpur, Bangladesh. His father is Md. Delwar
Hossain, a railway engineer, and his mother is Nurunnahar Chowdhury. His grandfather is Bohorot Ali Khan,
and his great grandfather, Omar Khan was a Jaminder in Chandpur, Comilla. Dr. Hossain lost his mother to
cholera when he was only three months. Professor Hossain spent his early school years in Laksham and studied
in Laksham A. Malek Institution, where he passed the Matriculation in 1960. He had a bright and curious mind
and excelled at school. After that, he got admitted to Barishal B. M. College. Due to his uncle’s job, he came
to Dhaka and was admitted to Jagannath College, where he completed H.S.C in 1964.

Professor Md. Anwar Hossain received his B.Sc. from Jagannath College, Bangladesh in 1966, M.Sc. in
Applied Mathematics from the University of Dhaka (DU) in 1969, M.Sc. in Pure Mathematics in 1971. He
achieved his Ph.D. on ”Infinite horizontal rolls under the effect of vertical and horizontal temperature gradients”
under the supervision of Professor S. M. A. Haque in 1978 as a research fellow of Bose Center.
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(a) (b)

Figure 1: Professor Anwar Hossain was born and grew up here archive-heritage, Chandpur, Bangladesh.

(a) (b)

Figure 2: Professor Anwar Hossain’s family and his great grandfather Jaminder niche in Chandpur, Comilla; another
heritage.

2 Academic Career
Soon after the completion of his Ph.D. study, Dr. Md. Anwar Hossain joined the Department of Mathematics,
Dhaka University (DU) as a Lecturer in 1978 and was promoted to Assistant Professor in 1983, Associate Pro-
fessor in 1989, and a full professor in 1993. Dr. Hossain worked as a Visiting Professor of the Department of
Mathematics, COMSATS Institute of Information Technology Islamabad from 2005 to 2007, Foreign Profes-
sor from 2007 to 2009. He served as an Assistant Professor at Al-Fathah University, Tripoly, Libya from 1986
to 1989. Dr. Hossain became University Grant Commission (UGC) Professor of DU from 2015 to 2017 for
his distinguished contributions to physical sciences. He was a Fellow of the Bangladesh Academy of Sciences,
Senior Associate, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy; Honorary Fellow,
Australian Institute of High Energetic Materials, Australia since October 2011.

Professor Anwar Hossain was the founder Associate Editor of the GANIT: Journal of Bangladesh Mathemati-
cal Society. He had tremendous efforts in promoting mathematics education in Bangladesh. He played a pivotal
role to initiate National Undergraduate Mathematics Olympiad in Bangladesh. He was the Co-Convener of the
olympiad committee until his death. Professor Hossain was also the President of the Bangladesh Mathematical
Society from 2012 to 2013. He was always active in organizing international conferences, workshops, research
schools, etc. in different corners of Bangladesh. Professor Hossain was an amicable, kind-hearted, good soul
in every sense of the term.
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ABSTRACT 

In this paper, a large-scale linear programming problem including several parameters such as labor cost, raw 

material cost, machine and other cost have been formulated. Then the formulated problem has been solved by 

using Benders’ Decomposition Method. The formulated large model is divided into master and small sub 

problem. In order to validate and calibrate the model, real data from a soap industry named Mega Sornali Soap 

and Cosmetics Industry have been collected. Soap industry is one of the most feasible business options owing 

to the straightforward manufacturing process involved starting a soap and detergent manufacturing business 

in Bangladesh. These models are solved by using AMPL. To find out the significant parameters of the model, 

the sensitivity analysis of different cost parameters such as labor cost, raw material cost and machine cost have 

been be considered. From the sensitivity analysis, the decision makers of the factory would able to find out 

the ranges of cost coefficients and all the resources. As a result, the company could able to see how any change 

can affect the profit or loss of the factory. From the numerical results, the most profitable product of the 

company is found to be Sornali Soap and Mega Extra Powder. On the contrary, Mega SornaliSobiMarka Soap 

and Mega Washing Powder are not more profitable. Further, raw material cost is the most significant sensitive 

cost. If the raw material cost can be decreased the profit could also beincreased. Finally, the result of the 

optimal solution has been represented in tabular and graphs.  
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1. Introduction 

Linear programming is a method to achieve the best outcome such as maximum profit or lowest cost in a 

mathematical model of any business organizations. Decomposition technique is one of the most commonly 

used techniques for solving Linear Programming Problem (LPP). If the number of decision variables and 

constraints are very large then it would be very difficult to solve manually. Benders’ Decomposition Method 

https://doi.org/10.3329/ganit.v41i2.55026
mailto:mssanjidaaktar24@gmail.com
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(BDM) is a solution method for solving certain large-scale optimization problems that have special block 

structure.  

In literature, [1] introduced a decomposition algorithm for linear programming.  [2] Explained a method of 

decomposition for integer programs. [3] reported the partitioning procedures for solving mixed variables 

programming problems.[4] presented an integer programming algorithm for vehicle routing problem involving 

capacity and distance restrictions. They derived exact solutions for problems involving up to sixty cities. [5] 

Established decomposition-based pricing model for solving a large-scale MILP for an integrated fishery. They 

described how a fishery manager can schedule fishing trawlers to determine when and where they should go 

and return their caught fish to the factory. The authors of [6] presented technique for solving large nonconvex 

water resources management models using generalized BDM. Then [7] developed a decomposition algorithm 

for the design of a no simultaneous capacitated evacuation tree network. Vendor-Bayer coordination and 

supply chain optimization with deterministic demand function was analyzed by [8]. 

A mixed-integer programming techniques for decomposing IMRT fluency maps using rectangular apertures 

had explained by [9]. They studied the problem of minimizing the number of rectangles (and their associated 

intensities) necessary to decompose such a matrix. They proposed an integer programming-based methodology 

for providing lower and upper bounds on the optimal solution and demonstrate the efficacy of their approach 

on clinical data. In [10], the authors implemented the Dantzig-Fulkerson-Johnson algorithm for large travelling 

salesman problems. An algorithm is described for solving large-scale instances of the Symmetric Travelling 

Salesman Problem (STSP) to optimality. [11] Showed a Benders’ decomposition algorithm for the single 

allocation hub location problem under congestion. The single allocation hub location problem under 

congestion is addressed in this article. Then a very efficient and effective generalized Benders decomposition 

algorithm is deployed, enabling the solution of large-scale instances in reasonable time. An approach for the 

locomotive and car assignment problem using Benders’ Decomposition illustrated in [12]. One of the problems 

faced by rail transportation companies is to optimize the utilization of the available stock of locomotives and 

cars. They described a decomposition method for the simultaneous assignment of locomotives and cars in the 

context of passenger transportation.  

This paper proposes an optimal formulation optimization model for Soap industry. To formulate a linear 

programming model that would suggest a viable product-mix to ensure optimum profit for company. This 

study minimizes the production cost and find out various types of effects of parameters in production period. 

In addition, find out the significant constraints of the company regarding cost and resources. The formulated 

model soles by BD method using Mathematical Programming Language (AMPL). The solution of the problem 

discusses briefly and carries out the optimal product for the industry. 

The paper is structured as follows: in Section 2, the adaptation of the BD model for the Soap industry 

formulation is described and a Linear programming problem is developed, aiming at the maximization of 

profit. In Section 3, an effect of the model with solution and findings is worked out. Finally, Section 4 

concludes the paper, highlighting the main results and introducing some research challenges for the future. 

2. Formulation of the problem 

In this section, it will be developed a mathematical model from this data which will be resulting into a large 

LPP and by applying the solving procedure of LPP and by applying the solving procedure of LPP in its 

production planning. It will be tried to identify its desired production rate and to answer some questions that 

may arise when thinking about the profit. It will be showed the impact of LPP in business planning. To 

understand the effect of several parameters and the profit, we propose a mathematical model that can predict 

the significant parameters.  

A standard form of a Linear Program is: 

 Maximize z = 𝑐𝑇x 

 Subject to Constraints: Ax ≤ b 

                                      x ≥ 0, 

Where c ∈ℝ𝑛, b ∈ℝ𝑚 are given vectors and A ∈ℝ𝑚×𝑛 is a matrix. 

The following table show the decision variables and their descriptions. 
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Table 2.1: List of the parameters involved in the model 

 
Parameters   Description  

 

X1   The unit of Mega SornaliSobiMarka Soap (250g).  

X2   The unit of SornaliBati Soap (175g).  
X3   The unit of Sornali Soap 2015 (500g). 

X4   The unit of Sornali Soap (250g). 

X5   The unit of Mega Sornali Full Marka Soap (250g). 
X6   The unit of Mega Washing Powder (25g). 

X7   The unit of Mega Washing Powder (200g). 

X8   The unit of Mega Washing Powder (500g). 
X9   The unit of Mega Extra Powder (200g). 

X10   The unit of Mega Extra Powder (500g). 

 

 

General mathematical form of our proposed problem as the following: 
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Where b1, b2 and b3 are available labour cost, machine and other cost and raw material cost. i  are lower 

and upper bound of different products. 

 

To solve the above problem real-life data has been collected from a company named Mega Sornali Soap and 

Cosmetics Industries Ltd. It was established in 2015. This company produces five types of soap, three types 

of lemon powder and two types of mega extra powder. 

In Table 2.2, presents the different types of per unit raw materials cost. Table 2.3, shows per unit raw materials 

cost to produce Lemon Detergent Powder.  Table 2.4, display per unit raw materials cost to produce Extra 

Detergent Powder.   

Table 2.2: Different types of raw materials cost 

 

 

 

No. Name Cost (TK)/Kg 

01. Silicate 14 

02. Palm Oil 76 

03. Palm Pati 80 

04. Rice Pati 54 

05. Palm Stearing 80.50 

06. Soybean 48.50 

07. Caustic Soda 32 

08. S.L.S.(Foam Powder) 290 

09. Perfumed 1000 

10. Colour 1000 
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Table 2.3: Raw Materials to produce Lemon Detergent Powder 

No. Name Cost (TK)/Kg 

01. Dolomite 5 

02. Global Salt 12 

03. Calcium Carbonet 15 

04. Soda 32 

05. Lapsa (Foam) 125 

06. Colour 4000 

07. Perfume 1000 

 

Table 2.4: Raw materials to produce Extra Detergent Powder 

No. Name Cost(TK)/Kg 

01. Limestone 7 

02. Soda 32 

03. Calcium Carbonet 15 

04. Global Salt 12 

05. Lapsa 125 

06. Sky White 300 

07. S. Perkel 55 

08. Perfume 1000 

 

Table 2.5: Selling Price of Soap 

 

 

 

 

 

 

 

 

 

Table 2.6: Selling Price of Lemon Powder 

No. Name Quantity(g) 
Selling Prices Per piece 

(TK) 

01. Mega Washing Powder 25 2.5 

02. Mega Washing Powder 200 6.86 

03. Mega Washing Powder 500 14 

 

Table 2.7: Selling Price of Mega Extra Powder 

No. Name Quantity(g) Selling Prices Per piece 

No. Name Quantity(g) 
Selling Prices Per 

piece (TK) 

01. Mega Sornali Sobi Marka Soap 250 11.66 

02. SornaliBati Soap 175 6.50 

03. Sornali 2015 500 20 

04. Sornali Soap 250 10.41 

05. Mega Sornali Full Marka 250 8.33 
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(TK) 

01. Mega Extra Powder 200 10.32 

02. Mega Extra Powder 500 20 

 

 

Table 2.8:  Price of machine 

No. Name Price 

01. Mixer Machine 210000 

02. Sipter Machine 100000 

03. Packing Machine (Mini) 150000 

04. Packing Machine (250g, 500g) 300000 

 

Table 2.9: Salary Structure 

Post Salary monthly (TK) 

Mechanical Engineer 15000 

Manager 10000 

Electrician 8000 

Fueling 9500 

Sweeper 5000 

Machine Operator 5000 

 

Table 2.10: Some brands of foreign material 

Country Brand 

Bhutan Limestone, Dolomite 

India Lapsa 

Taiwan Foam Powder 

 

Table 2.11: Other cost 

Purpose Cost (TK) 

Oil 2250 

Tools 3000 

Electric Motor (5 pieces) 9000 

Total 14250 

 

In Table 2.5, represents the selling price of various companies of per unit soap. Table 2.6, defines the selling 

price of different types of Lemon Powder. Table 2.7, denotes the selling price of different types of Mega Extra 

Powder. Table 2.8, describes various types of machine price. Table 2.9, represents the salary of various 

employers. Table 2.10, denotes the some brands of foreign material. Finally, Table 2.11; ensure other cost to 

produce different types of soap. The following Table 2.12 shows the information of different soaps and their 

raw materials cost, labor cost and machine and other cost that has obtained the previous primary data described 

in Table 2.11. 
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Table 2.12: Product wise cost and profit 

Variable 
Labor cost B1

n 
Machine and other  

cost B2
n 

Raw material  

cost B3
n 

Profit for each variable 

X1 0.236 0.054 8.644 2.725 

X2 0.295 0.068 3.447 2.69 

X3 0.295 0.065 11.991 7.649 

X4 0.268 0.055 6.818 3.269 

X5 0.322 0.067 5.278 2.663 

X6 0.163 0.029 2.0 0.308 

X7 0.271 0.062 3.81 2.717 

X8 0.295 0.075 7.5 6.13 

X9 0.236 0.06 6.4 3.62 

X10 0.3 0.1 13.33 6.26 

 

According to the above data the LPP problem for the Mega Sornali Soap and Cosmetics Industries  

Ltd is formulated as follows. 

 

The objective function of the LPP model is: 

Maximize, 

1 2 3 4 5 6 7

8 9 10

  2.725 2.69 7.649 3.269 2.663 0.308 2.717

6.13 3.62 6.26

Z X X X X X X X

X X X

      

  
 

Subject to: 

 

1 2 3 4 5 6 7

8 9 10

0.236 0.295 0.295 0.268 0.322 0.163 0.271

0.295 0.236 0.3 60000

X X X X X X X

X X X





    

  
 (2.1) 

1 2 3 4 5 6 7

8 9 10

0

0

.054 0.068 0.065 0.055 0.067 0.029 0.

. 8 0

062

0.075 0 06 0 5 0.1 0

X X X X X X X

X X X

    





  
 (2.2) 

1 2 3 4 5 6 7

8 9 10

8.644 3.447 11.991 6.818 5.278 2.0 3.81

7.5  6.4 13.33 1000000

X X X X X X X

X X X

     

  
 (2.3) 

10 25000X   (2.4) 

20 20000X   (2.5) 

30 20000X   (2.6) 

40 22000X   (2.7) 

50 18000X   (2.8) 

60 35000X   (2.9) 
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70 21000X   (2.10) 

80 20000X   (2.11) 

90 25000X   (2.12) 

100 20000X   (2.13) 

 

Where, the objective function is to maximize the total profit where the coefficients are the profit of each 

product, equation (2.1) describes the labour cost where the coefficients are the labor cost required for each 

product. Equation (2.2) illustrates the machine cost where the coefficients are the cost of machine required for 

each product. Equation (2.3) represents other cost that includes tax, interest, electricity bill, fix cost etc. and 

the coefficients are the cost required for product production. In this study raw material cost are included with 

other cost that associate to the company to produce above ten products. Equations (2.4) to (2.13) are lower 

bound and upper bound of different products. These are the boundary constraints that illustrate the limit of the 

production amount of ten soaps. 

2.1 Optimal solution by Bender Decomposition  

In this subsection master problem is expressed. The master problems of Bender Decomposition method are as 

follows: 

Master Problem: Maximize,
1 2 3 4 5M  2.725 2.69 7.649 3.269 2.663X X X X X      

Subject to: 

10 25000X   (2.1.1) 

20 20000X   (2.1.2) 

30 20000X   (2.1.3) 

40 22000X   (2.1.4) 

50 18000X   (2.1.5) 

  

a. Primal sub-problem  

In this subsection primal sub-problem is generated. The primal sub-problem of Bender Decomposition method 

are as follows 

Maximize,
6 7 8 9 10 0.308 2.717 6.13 3.62 6.26P X X X X X      

Subject to:   

6 7 8 9 10

1 2 3 4 5

0.163 0.271 0.295 0.236 0.3

60000 0.236 0.295 0.295 0.268 0.322

X X X X X

X X X X X

   

    
 (2.2.1) 

6 7 8 9 10

1 2 3 4 585000

0.029 0.062 0.075 0.06 0.1

0.054 0.068 0.065 0.055 0.0670

X X X X X

X X X X X

   

   
 (2.2.2) 
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6 7 8 9 10

1 2 3 4 5

2.0 3.81 7.5 6.4 13.33

1000000 8.644 3.447 11.991 6.818 5.278

X X X X X

X X X X X

 

   

 


 (2.2.3) 

60 35000X   (2.2.4) 

70 21000X   (2.2.3) 

80 20000X   (2.2.4) 

90 25000X   (2.2.5) 

100 20000X   (2.2.6) 

2.3 Dual sub-problem 

Considering the data and above formation the dual problem can be derived as follows: 

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 5 6 7

,  = (60000 0.236 0.295 0.295 0.268 0.322

0.054 0.068 0.065   0.0

)

(850000 )

( )6

55 0.067

1000000 8.644 3.447 11.991 .818  5.278

35000 21000 20000 25000

Minimize D X X X X X

X X X X X

X X X X X







   

   

     

     

  



 820000

1

2

3

(60000 0.236*25000 0.295*20000 0.295*20000 0.268*22000 0.322*18000

0.054*25000 0.068*20000 0.06520000 0.055*22000 0.067*18000

1000000 8.644*25000 3.447*20000 11.991*20000 6.818

)

(850000

*2 0

)

200







     

     

      

4 5 6 7 8

5.278*18000

 35000 21000 20000 25000 20000        

1 2 3 4 5 6 7 830600 843600 9230660 35000 21000 20000 25000 20000                

Subject to: 

1 2 3 40.163 0.029 2.06 0.308        (2.3.1) 

1 2 3 50.271 0.062 3.81 2.717        (2.3.2) 

1 2 3 60.295 0.075 7.5 6.13        (2.3.3) 

1 2 3 70.236 0.06 6.49 3.62        (2.3.4) 

All 0i   (2.3.5) 

3. Solution and results discussion 

The formulated LPP has been solving using AMPL. The program consists of three parts: model file, data file 

and run file. After developing a model file, it must arrange a data file according to the model file. Both the 

model and related data file must be called in command file with proper codes. Then to obtain the output of the 

problem it must call command in AMPL. Then the solution can be found by run file using solver CPLEX. 

After solving the LP formulated in previous section the maximum profit is obtained:  623195.5866 and the 

following Table 3.1 shows the values of the estimated parameters. 

Table 3.1: Estimated values of the parameters 
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Parameter     Values

X1    0.00 

                   X2         20000 

  X3     20000 

 X4    22000 

 X5     18000 

 X6      0.00 

X7     21000 

X8     20000 

X9     25000 

X10     4218.3 

The formulated Master problem, Primal problem, and Duet problem are solved in several iterations. The 

estimated values of the parameters and shown in Table 3.2 as follows: 

 

 

Table 3.2: Solution of the BD Method with iteration 

Iteration 

number 
Master solution Primal solution Dual solution 

01. 
X1=25000, X2=20000, X3=20000, 
X4=22000, X5=18000,  
Master value: 394667. 

X6=35000, X7=21000, 
X8=20000, X9=25000, 
X10=20000;  
Primal value: 406137 

 

𝜆1 =
20.8667, 𝜆2=𝜆3=𝜆4=𝜆5=𝜆6=𝜆7=𝜆8=0; 

Dual value 638520 

02. 

X1=0, X2=16000, X3=20000, 
X4=22000;  

Master value: 354757 

X5=18000, X6=0, 
X7=21000, X8=20000, 
X9=25000, X10=11000; Primal 
value 386951 

𝜆1=14.327, 𝜆2=6.27,𝜆3=𝜆4= 𝜆5=𝜆6=
𝜆7= 𝜆8=0; 

 Dual value 563806.2 

 

03. 
X1=0, X2=20000, X3=20000; 

Master value: 306075.265 

X4=22000, X5=18000, 
X6=0, X7=21000, X8=20000, 
X9=25000, X10=4218.3; Primal 
value 306075.558 

𝜆1=14.003, 𝜆2=0,𝜆3=𝜆4= 𝜆5=𝜆6=
𝜆7= 𝜆8=0;  

Dual value 553891.8 

Table 3.2 describes the estimated parameters after iteration-3 of the Master problem, primal and Dual 

problems. The results of Table 3.2 demonstrate that the solutions are almost identical; this means that the 

optimal solution is achieved. 

The following Table 3.3 describes the comparison of the optimal results are obtained by the main problem and 

by BD method. 

Table 3.3: Comparison of solution of main problem and BDM problem 

 

Solution of main problem  Solution of BDM 
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X1=0, X2 = 20000, X3 =20000, X4 = 22000, X5 = 18000, X6 = 

0, X7 = 21000, X8 = 20000, X9 = 25000, X10 = 4218.3;    

objective z = 623195.5866    

X1=0, X2 = 20000, X3 =20000, X4 = 22000, X5 = 18000, X6 = 

0, X7 = 21000, X8 = 20000, X9 = 25000, X10 = 4218.1; 

objective z = 623194.859 

In the following Fig. 1.1 and Fig 1.2, show that relation among selling price, profit, and cost of numerous 

parameters. Fig1.1 shows that profit has negative influence with selling price. Fig 1.2 describes that labor and 

machine cost is very low in compare to raw materials cost. 

 

Fig 1.1: Selling price and profit 

 

 

Fig 1.2: Selling price and cost 

 

 

 
Fig1.3: Decreasing of profit by increasing cost parameters 
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Fig 1.4: Increasing of profit by decreasing cost parameters 

 

Fig 1.5: Profit analysis on raw material cost 

In the Fig 1.3 and Fig 1.4 illustrate that all the cost parameters have significant effect of the profit. They 

demonstrate that how profit change if the cost parameters decrease. Further, if cost parameters decrease, then 

profit increase. From the Fig 1.5, it is shown that how profit changes if raw material cost changes. From the 

above Fig 1.5, if raw material cost increases profit decreases. Again, if the raw material cost decreases profit 

increases.Fig1.5 depicts the effects of raw materials cost on profit. Raw materials cost has significant influence 

on profit. 

For the considered problem, the objective function is of maximization type and the objective function value 

gives the maximum profit. Here, the objective function value is 623195.5866. That means the maximum profit 

of the company is Tk 623195. From the result it is found that, 20000 unit of SornaliBati Soap, 20000 unit of 

Sornali Soap (2015), 22000 unit of Sornali Soap, 18000 unit of Mega Sornali Full Marka Soap, 0 unit of Mega 

Washing Powder (25g), 21000 unit of Mega Washing Powder (200g), 20000 unit of Mega Washing Powder 

(500g), 25000 unit of Mega Extra Washing Powder (200g), 4218 unit of Mega Extra Washing Powder (500g) 

are produced. 

It is noticed from the result that, the production of product type one and six are zero. They are not so profitable. 

So, the company can stop to produce these two types of products. It is also noticed that production types three 

and ten are more profitable than other types of production. From sensitivity analysis, it has been found that if 

cost parameters increase by 5%, 10% and 15%, profit decrease. If cost parameters are decreased by 5%, 10%, 

15% profit increase. It is also clear that labor cost and machine cost have not much effect on profit in the soap 

industry because labor cost and machine cost are very low in compare to other costs. Further, raw material 
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cost is very much effective on profit. From the sensitivity analysis, it is also clear that if raw material cost can 

be reduced profit will be increased. It is shown that a small change can affect the profit a lot.  

So, if the government can reduce tax and vat on raw materials of soap industry that is imported from abroad, 

this sector will become more profitable for the businessmen. If these raw materials can be produced in our 

country, soap industry will be more profitable in future than before. This sector can increase our GDP. It will 

also be able to contribute a lot to our economy. From this data, the company can easily get a clear idea about 

their profit, production rate and selling procedures. The main aim of any company is to maximize their gain 

with minimum resources. In the case of this company, they can get best profit with minimum cost. Dual 

variable that is shadow prices help the company to assume their profit. Now it can be said that, if the company 

uses mathematical modelling technique and plans about its production according to the optimal solution, 

obtained by computer programming, they will get an accurate idea about the cost, production rate and profit.  

4. Conclusion  

In this paper it is shown that the maximization of profit of Mega Sorsnali Soap and Cosmetic Industries Ltd. 

BDM is used to maximize profit. After obtaining the optimal result sensitivity analysis is also used to see the 

changes of optimal result after changing cost parameters. 

Here ten types of production from the selected company have been taken into consideration. Labor cost, 

machine cost and raw material cost have also been taken into consideration. Then using this data an LPP is 

formulated. In this LPP, objective function is to maximize profit. Labor cost, machine cost, raw material cost 

and other cost are considered as subject to constraints. Maximum production rate that the company gave us 

are also taken into consideration as subject to constraints. After that this LPP is solved in AMPL. Then this 

problem is solved by BDM. Both solutions gave the same result. After that sensitivity analysis is discussed. 

Sensitivity analysis helps the company to improve their business policy. In the sensitivity analysis, we have 

increased cost parameters by 5%, 10% and 15%. Then we have found that profits decrease. Similarly, we have 

decreased cost parameters by same percentage. In this case, it is found that profits increase. Both cases are 

shown in the Fig 1.3 and Fig 1.4. We know that labor cost is very low in our country. We have taken machine 

cost also very low. But raw material cost is very high. In the Fig1.5 it is shown that if the raw material cost 

can be reduced this sector becomes more profitable. Like this company, applying of mathematical 

programming can help the owners of business organization to take correct decisions. This can identify the 

future production patterns and outlook resulting in the establishment of new production units, while thinking 

for maximizing profit and minimizing the cost of the company. 

When we want to collect data the industry owners did not want to disclose their real data. In this study, we 

have collected data from a single industry. Future study can be done by collecting data from more industries 

to get better result. In future some other cost parameters such as transportation cost can be included. In this 

paper, there is no discussion on shadow price. In future, anyone can work on it. In future this model can be 

used in other industries. 
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ABSTRACT 

Nanofluids have been used in direct absorption solar collectors (DASC) to enhance their performance, wherein 

contribution of entropy generation plays a decisive role. Among other factors, entropy generation is influenced 

including physical structure of the system and operation conditions. In this article, heat transfer and efficiency 

of a nanofluid based DASC considering the entropy generation has been performed for various physical 

alterations and operating conditions. Working nanofluids are chosen to Cu-water nanofluid, Al2O3-

waternanofluid, TiO2-waternanofluid and water is chosen as base fluid. Solar irradiation value for the current 

analysis is considered 225W/m2 from the annual average solar irradiance range (215 W/m² in the north-west 

to 235 W/m² in the south-west per day) in Bangladesh according to UNDP report. Governing equations 

consisting of Navier–Stokes and energy equations are solved by Penalty finite element method with Galerkins 

weighted residual approach. Impact of parameters nanoparticle concentration and thickness of flow on 

isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy 

generation and Bejan number are discussed for all considered fluids. Results reveal that DASC system exhibits 

efficacy in heat transfer using 2% Cu nanoparticles under 225W/m2 irradiance, 0.015 kg/s mass flow rate and 

0.015 m flow thickness. The outcomes will be supportive in designing DASC to attain improved heat transfer 

performance considering entropy generation.  
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1. Introduction 

Energy demand is growing day by day, but fossil fuels are limited. Renewable energy sources, especially 

solar energy is considered as reliable source with very little ecological impact. The hourly incident solar flux 
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on the earth's surface is greater than the global annual energy consumption [1]. However, the challenge is to 

efficiently harvest and convert the solar energy into the useful form. Solar collectors convert the solar energy 

into heat and flat-plate or evacuated-tube solar collectors are the commonly used devices in this regard. 

Recently, a new type of collector namely direct absorption solar collector (DASC) [2] have been developed 

that offer enhanced thermal efficiency. 

However, the main drawback with DASC collectors is the poor absorption properties of conventional fluids 

used in these collectors. To solve this problem, researchers tried the use of nanofluids in DASC because of 

their improved thermal properties over the conventional fluids [3]. Heat transfer enhancement in solar devices 

is one of the key issues of energy saving and compact designs. An attempt had been made by Verma and 

Kundan [4] to experimentally investigate the variation in collector efficiency using nanofluids in a DASC. 

Parvin et al. [5] investigated the influence of Reynolds number and solid volume fraction of nanofluid in heat 

transfer through a nanofluid based direct absorption solar collector. Tyagi et al. [6] theoretically investigated 

the efficiency of a nanofluid-based direct absorption solar collector and compared it to the typical flat plate 

collector. Otanicar et al. [7] reported on the experimental results on solar collectors based on nanofluids where 

they demonstrated efficiency improvements of up to 5% in solar thermal collectors by utilizing nanofluids. 

Mahian et al. [8] made a review of the applications of nanofluids in solar energy. Two-phase (non-

homogeneous) nanofluid approach towards the convection heat transfer within a wavy direct absorber solar 

collector is reported by Alsabery et al. [9]. 

All thermofluidic processes involve irreversibilities and therefore incur an efficiency loss. In practice, the 

extent of these irreversibilities can be measured by the entropy generation rate. In designing practical systems, 

it is desirable to minimize the rate of entropy generation to maximize the available energy. Bejan[10,11] 

studied on entropy generation minimization in order to minimize the irreversibility associated with convective 

heat transfer process. Mixed convection and entropy generation of Cu–water nanofluid in a cavity was 

numerically studied by Khorasanizadeh et al. [12]. They showed the influence of Reynolds number in 

enhancing heat transfer and minimizing entropy generation. Mohseni-Languri et al. [13] performed 

experimental study on energy and exergy of a solar thermal air collector. The rate of entropy generation 

increases as the irreversibility distribution ratio increase. Moreover, for given values of the irreversibility 

distribution ratio, the entropy generation rate is determined by the heat transfer irreversibility and/or fluid 

friction irreversibility.  

Shahi et al. [14] investigated the entropy generation induced by natural convection heat transfer in a square 

cavity containing Cu-water nanofluid and a protruding heat source. Results showed that the Nusselt number 

increased and the entropy generation reduced as the nanoparticle volume fraction was increased. In addition, 

it was shown that the heat transfer performance could be maximized, and the entropy generation minimized 

by positioning the heat source on the lower cavity wall. Esmaeilpour and Abdollahzadeh [15] examined the 

natural convection heat transfer behavior and entropy generation rate in a Cu-water nanofluid-filled cavity 

comprising two vertical wavy surfaces with different temperatures and two horizontal flat surfaces with 

thermal insulation. The results showed that the mean Nusselt number and entropy generation rate both 

decreased as the volume fraction of nanoparticles increased. It was also shown that the mean Nusselt number 

and rate of entropy generation both increased with an increasing Grashof number but decreased with an 

increasing surface amplitude.  

Cho et al. [16] investigated the natural convection heat transfer performance and entropy generation rate in 

a water-based nanofluid-filled cavity bounded by a left wavy-wall with a constant heat flux, a right wavy-wall 

with a constant low temperature, and flat upper and lower walls with adiabatic conditions. Results showed that 

the mean Nusselt number increased and the entropy generation rate decreased as the volume fraction of 

nanoparticles increased. Also, it was shown that the mean Nusselt number could be maximized and the entropy 

generation minimized by carefully controlling the geometry parameters of the two wavy surfaces. 

 It may be mentioned here that, several researchers like Karami et al. [17], Tahereh et al. [18] and Goel et 

al. [19] focused mainly on first-law efficiency of the nanofluid based direct absorption solar collector without 
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considering entropy generation. Parvin et al. [20], Parvin and Alim [21] incorporated entropy production and 

irreversibility issue in analyzing the performance as functions of solar irradiance and mass flow rate. 

Recently, Kumar et al. [22] reported that gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) 

have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) 

due to localized surface plasmon resonance (LSPR) effect. On the other hand, to achieve high-efficiency photo-

thermal conversion Guo et al. [23] introduced optical fiber as interior light source in a DASC to boost photo-

thermal conversion performance of MWCNT-H2O nanofluids. Authors reported an accomplishment of 64.5% 

photo-conversion efficiency for 0.010 wt% MWCNT and the optical fiber location of 15 mm. 

Based on the above literature, it can be concluded that though entropy generation has been considered by 

few researchers in evaluating nanofluid-based DASC collector efficiency, effect of physical changes with 

operating conditions is not focused that much. Hence, there is a need to evaluate the effect of physical 

diversities and operating conditions on the performance of DASCs. In this regard, an attempt has been made 

to numerically simulate fluid flow, heat transfer and entropy generation behaviors through a direct-absorption 

solar collector with the variation of thickness of flow (D) and solid volume fraction (ϕ) of nanoparticles for 

various nanofluids and water under the solar irradiation value 225W/m2 taken from the annual average solar 

irradiance range in Bangladesh [24]. Results are presented in terms of isotherm distribution, average output 

temperature, mean Nusselt number, collector efficiency, rate of entropy generation, and Bejan number. 

2. Problem formulation 

a. Geometric modeling 

Fig. 1 shows the geometry of the direct absorption solar collector filled with nanofluid. The fluid is 

enclosed within the space between the glass cover and the insulated bottom surface of the DASC. Two-

dimensional heat transfer analysis is considered for the nanofluid in the DASC with computational domain of 

surface area, length and height of A, L and D respectively in which direct sunlight is incident on a thin glass 

cover and the incident solar flux pass through it. The ratios of dimensions of the collector are chosen according 

to the experimental setup of Verma and Kundan [4]. Four different fluids; Cu-water nanofluid, Al2O3-

waternanofluid, TiO2-waternanofluid and water are utilized as the heat transfer medium. The inlet temperature 

and velocity of the fluid are Tin and Uin respectively. The bottom wall is insulated, i.e., no heat flux can pass 

through it. This assumption is based on the case when the bottom surface is highly insulating. In order to model 

the heat transfer characteristics, the top surface is assumed to be exposed to the ambient atmosphere that loses 

heat through convection. 

Fig. 1.  Geometry of the computational domain of the DASC 

b. Thermo-physical properties 

In the present study, a comparative heat transfer performance analysis of a DASC system has been 

performed for base fluid water and, nanofluids Cu-water, Al2O3-water and TiO2.Table 1 gives the thermo-

physical properties of water and the nanoparticles [25]. 
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Table 1: Thermo physical properties of fluid and nanoparticles at 300K 

Physical Properties Fluid phase (Water) Cu 

Copper 

Al2O3 

Alumina 

TiO2 

Titania 

Cp(J/kgK) 4179 385 765 686.2 

 (kg/m3) 997.1 8933 3970 4250 

k (W/mK) 0.613 400 40 8.9538 

β (/K) 21×10-5 5.1×10-5 2.4×10-5 2.4×10-5 

 

c. Mathematical modeling 

The nanofluid flow is assumed to be laminar and incompressible. Water and nanoparticles are taken in thermal 

equilibrium and no slip occurs between them. Boussinesq approximation is used for the density variation of 

the nanofluid. Only steady state case is considered. The governing equations for the flow throughout a direct 

absorption solar collector in terms of the Navier-Stokes and energy equations are given as: 

 

Continuity equation: 

0
u v

x y

 
 

 
        (1) 

x-momentum equation: 

2 2

2 2nf nf

u u p u u
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x y x x y
 
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      
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    (2) 

y-momentum equation: 

2 2

2 2nf nf
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Energy equation: 

2 2
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   (4) 

The energy equation is coupled to the Radiative Transport Equation (RTE)[5]through the divergence of the 

radiative flux
r

e

q
K I d

y
 



 



  . 

Also,  1nf f s       is the density, 

      1p p pnf f s
C C C       is the heat capacitance,  
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 nf nf p nf
k C  is the thermal diffusivity,  

In the current study, the viscosity of the nanofluid is considered by the Pak and Cho correlation [26]. This 

correlation is given as 

 21 39.11 533.9nf f           (5) 

and the thermal conductivity of Maxwell Garnett (MG) model [27] is 

 
 

2 2

2

s f f s

nf f

s f f s

k k k k
k k

k k k k





  


  
     (6) 

The boundary conditions are: 

at all solid boundaries: u = v = 0 

at the top surface: inward heat flux per unit area  nf conv col amb

T
k q h T T

Y


  


 

at the left inlet: inT T u = Uin 

at the outlet boundary: convective boundary condition p = 0 

at the bottom surface: 0
T

y





 

d. Average Nusselt number 

The average Nusselt number (Nu) is expected to depend on several factors such as thermal conductivity, 

heat capacitance, viscosity, flow structure of nanofluids, volume fraction, dimensions and fractal distributions 

of nanoparticles. The form of local heat transfer rate at the top surface is: 

nf

f

k T
Nu

k y


 


       (7) 

By integrating the local Nusselt number over the top heated surface, the average heat transfer rate along the 

top surface of the collector can be written as: 

 

0

L

Nu Nu dx         (8) 

e. Entropy generation 

The average entropy generation, S for the entire computational domain is as follows: 

, , , ,

1
gen gen h m gen v mS S dV S S

V
       (9) 
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where V   is the volume occupied by the nanofluid and Sgen,h,m and Sgen,v,m are the average entropy generation 

for heat transfer and viscous effect respectively [5]. 

The Bejan number Be, defined as the ratio between the entropy generation due to heat transfer by the total 

entropy generation, is expressed as: 

, ,gen h mS
Be

S


       (10) 

It is known that the heat transfer irreversibility is dominant when Be approaches to 1. When Be becomes 

much smaller than 1/2 the irreversibility due to the viscous effects dominates the processes and if Be = 1/2 

the entropy generation due to the viscous effects and the heat transfer effects are equal [14]. 

f. Collector efficiency 

A measure of a collector performance is the collector efficiency (η) defined as the ratio of the useful energy 

gain to the incident solar energy which can be written as: 

 useful gain

available energy

p out in
mC T T

AI



 

   (11) 

where m is the mass flow rate of the fluid flowing through the collector; Cp is the specific heat at constant 

pressure and Tin and Tout are the inlet and outlet fluid temperatures, respectively. 

3. Methodology 

Penalty finite element method (FEM) [28] is used to solve the nonlinear governing equations along with 

boundary conditions for the considered problem. Due to mass conservation the continuity equation of has been 

used as a constraint to find the pressure distribution. Eqs. (1) - (4) are solved by the finite element method, 

where the pressure p is eliminated by a constraint. For large values of this constraint, the equation of continuity 

is automatically satisfied. Then the velocity components (u, v) and temperature (T) are expanded by means of 

a basis set. The Galerkin’s finite element technique yields the subsequent nonlinear residual equations. The 

integrals in these equations are evaluated employing three points Gaussian quadrature method. The non-linear 

residual equations are solved using Newton–Raphson method to determine the coefficients of the expansions. 

The convergence of solutions is assumed once the relative error for every variable between successive 

iterations is recorded below the convergence criterion 
1 410n n    , where n is the number of iteration 

and 


is any function of u, v and T. 

a. Discretization 

In the FEM, mesh generation is the procedure to subdivide a domain into a set of sub-domains, named 

finite elements, control volume, etc. The discrete locations are defined by the numerical grid, at which the 

variables are to be calculated. It is principally a discrete representation of the computational domain on which 

the problem is to be solved. Fig. 2 displays the finite element mesh of the present physical domain. Physics 

controlled mesh is created for the model where free triangular element with unstructured grid is used for 

discretization. 

 

 

 

Fig. 2.  Discretization of the computational domain 
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b. Grid independent test 

A wide-ranging mesh testing process is carried out to guarantee a grid-independent solution at I = 225 

W/m2, m = 0.15kg/s, D = 0.015m and  = 2% in a DASC. In the present work, five different non-uniform grid 

systems with the following number of elements within the resolution field: 48, 192, 768, 1616 and 3072 are 

examined. The numerical method is performed for the values of average Nusselt number for water-Cu 

nanofluid as well as base for the abovementioned elements to develop a perceptive of the grid fineness as 

shown in Table 2 and Fig. 3. The scale of the average Nusselt numbers for nanofluid and base fluid for 1616 

elements shows a little difference with the results obtained for the more elements. Hence, the non-uniform 

grid system of 1616 elements are chosen for the whole numerical computation. 

Table 2: Grid sensitivity test at I= 225 W/m2, m= 0.15kg/s, D =0.015m and  = 2% 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Grid independence analysis 

 

 

 

 

 

Nodes 

(elements) 

407 

(48) 

1434 

(192) 

5360 

(768) 

9484 

(1616) 

20700 

(3072) 

Nu(nanofluid) 2.40051 2.89143 3.30279 3.582503 3.609242 

Nu(base fluid) 1.30253 1.61958 1.93253 2.13084 2.15753 

Time (s) 126.265 312.594 398.157 481.328 929.377 
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Fig. 4.  Comparison of collector efficiency between present code and Otanicar et al. [7] at I = 1000 W/m2 

c. Validation 

The present numerical procedure is validated with the graphical representation of Otanicar et al. [7] for 

collector efficiency (%) versus volume fraction (%) of water/graphite nanofluid of 30 nm spherical graphite 

nanoparticles. The validation was carried out in a direct absorption solar thermal collector at irradiation level 

I = 1000 W/m2and mass flow rate=42 ml/h, respectively, which are used in [7] for modelling and experiment. 

Fig. 4 exhibits very good agreement of the numerical results obtained in present work with those reported by 

Otanicar et al. [7] for the above stated condition. 

4. Results and Discussion 

Numerical simulation has been carried out to display the outcomes in terms of isotherms, average 

temperatures at the outlet, average Nusselt number, percentage of collector efficiency, mean entropy 

generation and Bejan number for different values of parameters flow thickness and solid volume fraction for 

a DASC filled with various nanofluids. The considered values of flow thickness are D = 0.012, 0.015, 0.018, 

0.02 m and solid volume fraction are = 0%, 1%, 2%, 3% and 4%. Three different nanofluids; Cu-water, 

Al2O3-water and TiO2-water are used in addition to the base fluid water. Irradiation I = 225 W/m2 and mass 

flow rate m = 0.015 kg/s are found to me most effective in transferring heat and have been chosen for this 

simulation. 

a. Effect of solid volume fraction 

Fig. 5 (a) - (d) stands for the effect of solid volume fraction  on the thermal fields. The values of  varies 

from 0% to 3%. Isotherms are almost like the active parts for water-copper nanofluid. The temperature 

distributions show that due to escalating values of , the maximum temperature in the domain rises which 

results an enhancement in the overall heat transfer. This effect can be accredited to the dominance of the 

thermal conductivity property. It is worth noting that as the values of  increase, the rate of increment is 

notable up to the solid volume fraction 2%. 

The average outlet temperature, average Nusselt number and collector efficiency for various  are 

exhibited in Fig. 6 (a)-(c). Different nanofluids and pure water are tested. Parabolic profiles are seen for 
versus the average outlet temperature, average heat transfer rate and collector efficiency for all nanofluids. 

Like profiles are observed in all three figures. Output temperature, heat transfer rate and collector efficiency 

rise for raising the values of from 0% to 2% then these values increase at a very slow rate and become 
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independent of   for  > 3%.This occurs due to the fact that for higher concentration of nanoparticles, 

sedimentation in the fluid starts and movement of the fluid becomes slower which reduces the heat transport 

process and consequently the efficiency of the collector.  

 

  
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
       

 

 

Fig. 5.  Isothermal contours for different solid volume fraction (a)   = 0%, (b)   = 1%, (c) = 2%, and (d)   = 3% with I = 225 

(W/m2), m = 0.015 (kg/s) and D = 0.015(m) for Cu-water nanofluid. 
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Fig. 6. Effect of solid volume fraction on (a) average output temperature, (b) Average Nusselt number and (c) collector efficiency with I 
= 225 (W/m2), m = 0.015 (kg/s) and D = 0.015(m) for different nanofluid as well as base fluid. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Effect of solid volume fraction on (a) average entropy generation and (b) Bejan number with I = 225 (W/m2), m = 0.015 (kg/s) 

and D = 0.015(m) for different nanofluid as well as base fluid. 
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Fig 7 (a)-(b) depicts the effects of nanoparticle concentration on entropy generation and Bejan number for 

various nanofluid and base fluid. The entropy generation rises as the nanoparticle concentration rises. Entropy 

production has the similar effect as the heat transfer for growing values of solid volume fraction. From the 

Bejan number versus  picture, it is clearly seen that entropy generation occurs due to the dominant heat 

transfer effect and this effect becomes larger corresponding to upper values. 

b. Effect of flow thickness 

The influence of depth of fluid in a DASC for four different values; D = (0.012, 0.015, 0.018, 0.02) [m] on 

isothermal contours are exposed in Fig. 8 (a)-(d). From the figure, it is observed that larger flow thickness 

cannot always raise the temperature. For the calculated values, flow depth of 0.015 [m] is found to give the 

maximum temperature. Fluid mass becomes greater with escalating the flow depth. That is larger amount of 

fluid also collects the same amount of heat and transmits though the larger domain. Thus, maximum 

temperature falls after a certain depth of flow. 
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Fig. 8. Isothermal contours for different flow thickness (a) D = 0.012(m), (b) D = 0.015(m), (c) D = 0.018(m), and (d) D = 0.02(m), 

with   = 2%, m = 0.015 (kg/s) and I = 225 (W/m2) for Cu-water nanofluid. 

 

Fig. 9 (a)-(c) demonstrates how the distance between the upper and lower surface affects the average 
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temperature of the outlet, average heat transfer rate and collector efficiency for various nanofluid and base 

fluid. The 2% concentration is preferred for the nanofluids. The average outlet temperature, average heat 

transfer rate and collector efficiency for all nanofluid and base fluid slightly increase as the value of D increase 

from 0.012[m] to 0.015[m]and after that they devalues monotonically with deeper flow. The reason behind 

this is the deeper flow correspond to larger fluid mass cannot transport more amount of heat from the upper 

surface. Therefore, collector efficiency cannot be enhanced by choosing greater flow thickness. Similar 

phenomena are observed for all the considered fluids. However, the Cu-water nanofluid is found to be most 

effective in enhancing the performance of the collector. 

The effects of flow thickness on entropy generation and Bejan number for various nanofluid and water are 

plotted in Fig 10 (a)-(b). The entropy generation rises by the deepness of the flow. The enhancement of entropy 

production becomes slower for higher depth of flow. Although the heat transfer reduces for higher collector 

depth, but entropy production grows because viscosity plays a part here in escalation the entropy generation 

which is also explained from the Bejan number profile. The Bejan number profile shows the falling trend with 

larger flow depth. The entropy generation because of viscous term increasing but still heat transfer entropy is 

leading since the values of Bejan number is much higher than 0.5. 
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Fig. 9: Effect of flow thickness on (a) average output temperature, (b) Average Nusselt number and (c) collector efficiency with   = 

(a) (b) 
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2%, I = 225 (W/m2) and m = 0.015 (kg/s) for different nanofluid as well as base fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 10: Effect of flow thickness on (a) average entropy generation and (b) Bejan number with   = 2%, I = 225 (W/m2) and m = 0.015 

(kg/s) for different nanofluidas well as base fluid. 

 

5. Conclusions 

In the present article, heat transfer performance of a nanofluid based DASC system has been investigated 

considering entropy generation under diverse physical orientations and operating conditions. Effect of 

different combinations of parameters has been examined to observe the output temperature variation. Besides, 

heat transfer rate, collector efficiency, average entropy generation and Bejan number of the working fluids 

have been evaluated. 

The following inferences are drawn from the present research: 

 The isotherms inside the solar collector are remarkably influenced by nanoparticle concentration and 

depth of flow. 

 Rate of heat transfer and efficiency enhances significantly for raising the fluid layer height up to 

0.015m. Further increase in fluid layer will lower the average Nusselt number and collector 

efficiency.  

 Higher heat transport and efficiency are observed for nanofluids than the base fluid. Cu- water gives 

superior efficiency than Al2O3- water and TiO2- water nanofluid. 

 Mean entropy generation is obtained higher for rising values of all parameters. 

 Bejan number approaches to 1 for the variation of all the parameters. That is the entropy production 

occurs mainly due to the heat transfer irreversibility though for higher flow thickness, the fluid 

friction irreversibility tends to rise. 

(a) (b) 
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 The nanofluid containing 2% Cu nanoparticles with combination of the solar irradiation 225W/m2, 

mass flow rate 0.015 kg/s and flow thickness 0.015m are established to be most effective in 

enhancing heat transfer rate and collector efficiency. 

It is concluded that higher efficiency of the collector can be obtained by making proper combination of 

parameters in order to minimize the entropy generation and enhance the heat transfer rate simultaneously. 

 

 

 

Nomenclature  

A surface area of the collector (m2) 

Be Bejan number 

Cp specific heat at constant pressure (J kg−1 K−1) 

D depth of the fluid (m) 

h  local heat transfer coefficient (Wm−2K−1) 

I  intensity of solar radiation (Wm−2) 

k  thermal conductivity (W m−1K−1) 

L  length of the collector (m) 

m mass flow rate (kgs−1) 

Nu Nusselt number 

q  heat flux (Wm−2) 

qr radiative heat flux (Wm−2) 

T temperature (K) 

u, v x and y components of velocity (ms−1) 

U fluid velocity (ms−1) 

x, y dimensional co-ordinates (m) 

 

Greek symbols 

 

α  fluid thermal diffusivity (m2s−1) 

ϕ nanoparticles volume fraction 

η collector efficiency (%) 

ρ  density (kgm−3) 

μ dynamic viscosity (kgm−1s−1) 

 

Subscripts 

 

f  fluid 

nf  nanofluid 

in input 

out output 

s solid particle 
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ABSTRACT

Morse-Novikov or Lichnerowicz cohomology groups of a manifold has been studied by researchers to deduce
properties and invariants of manifolds. Morse-Novikov cohomology is defined using the twisted differential
dω = d +ω∧, where d is the usual differential operator on forms, and ω is a non-exact closed 1-form on
the manifold. On a Riemanian manifold each Morse-Novikov cohomolgy class has unique harmonic repre-
sentative, and has Poincare duality isomorphism. This isomorhism have been proved in many elegant ways
in literature. In this article we provide yet another proof using ellepticity of a differential complex, Green’s
operator, and Hodge star operator which may be useful in other computations related to Morse-Novikov coho-
mology.
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1 Introduction
Let M be a manifold with differentiable structure of dimension n; denote by Ωk(M) the set of all degree k

differential forms on M and the de Rham cohomology ring is denoted by Hk (M). Let ω be a closed 1−form
not necessarily exact forming the twisted operator dω = d+ω∧ : Ωk(M)→ Ωk+1(M). It can easily be verified
that dω ◦ dω = 0. The cochain complex (Ω∗(M),dω) of the manifold M is known as the Morse-Novikov
complex. The Morse-Novikov or Lichnerowicz cohomology groups of M are the cohomology groups Hk

τ (M)
of this cochain complex. To study poisson geometry, A. Lichnerowicz in [1] studied, the Morse-Novikov
cohomology first. The zeros of the form ω has a combinatorial relation with ranks of these cohomologies
which has been used to give a generalization of the Morse inequalities in [2] and [3], S. P. Novikov while gave
an analytic proof of the real part of the Novikov’s inequalities has been studied by Pazhintov [4]. E. Witten
exploited exactness of τ to his famous invention of the the Morse-Novikov cohomology for exact τ in his
famous discovery Witten deformation in [5]. M. Shubin and S. P. Novikov applied the Witten deformation to
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E-mail address: mdsharifulislam@du.ac.bd
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an rigorous anlysis of limits of eigenvalues of Witten Laplacians for vector field and some more generalized 1-
form in [6] and [7]. For 1-forms with non isolated zeros and vector fields, Braverman and Farber [8] generalized
them. See [9] for more on this topics. Alexandra Otiman in [10] studied Lichnerowicz cohomology for special
classes of closed 1-forms. An important result in this connection due to X. Chen showed in [11], proved that a
Riemannian manifold M with almost non-negative sectional curvature and nontrivial first de Rham cohomology
ring has trivial Morse-Novikov cohomology ring independent of the closed non-exact 1-form ω . In [12], L.
Meng proved the Leray-Hirsch theorem for Morse-Novikov cohomology and for Dolbeault-Morse-Novikov
cohomology on complex manifolds, a blow up formula. Locally conformal symplectic manifolds has also been
studied using Morse-Novikov cohomology theory (see [13], [14], and [15]). Morse-Novikov cohomology
groups using d+ω∧ as the differential for a closed 1-form ω , on Riemannian manifold has nice properties like
each cohomology class has unique harmonic representative and finite dimensional, and has Poincare duality
isomorphism. This isomorhism have been proved in many elegant ways in literature. In this article we provide
yet another proof using ellepticity of a differential complex, Green’s operator, and Hodge star operator which
may be useful in other computations related to Morse-Novikov cohomology. This manuscript is composed
from a section of my doctoral thesis [16].

2 Review of known results
For a introduction to Morse-novikov cohomology see [16] [17]. Here we define it with few examples.

Let M be a manifold with differentiable structure of dimension n; denote by Ωk(M) the set of all degree k
differential forms on M and the de Rham cohomology ring is denoted by H p(M). Let ω be a closed 1-form
not necessarily exact forming the twisted operator dω = d +ω∧ : Ωk(M) → Ωk+1(M), where d is the usual
exterior derivative. Since d ◦ d = d2 = 0, ω ∧ω = 0,and d(ω ∧ ν) = dω ∧ ν −ω ∧ dν for any k-form ν , it
can easily be varified that dω ◦dω = 0. The cochain complex (Ω∗(M),dω) of the manifold M is known as the
Morse-Novikov complex. The Morse-Novikov or Lichnerowicz cohomology rings of M are the cohomology
rings Hk

ω(M) of this cochain complex. Let dω
k be the restriction of dω to Ωk (M). The cohomology group is

defined as

Hk
ω(M) =

ker(dω
k )

Im(dω
k−1)

.

This cohomology group is also known as Lichnerowicz cohomology group [1].

Example 1. [16][17] Morse-Novikov cohomology groups of S1 are trivial.

Example 2. [16][17] Morse-novikov cohomology group of real projective space Hk
ω(RPn)∼= Hk(RPn) for all

k and any closed 1-form ω . Where Hk(RPn) is the de Rham Cohomology group.

Example 3. [16][17] Morse-Novikov cohomology groups of T2 = {(x,y) ∈ R2}/2πZ2 are trivial.

We now review some well-known facts (see, e.g [18]). Let (M,g) be a closed compact oriented Riemannian
manifold of dimension n. At every point p ∈ M, we have an inner product gp on the tangent space TpM, and
therefore also an inner product on the cotangent space T ∗

p M determined by the inverse matrix of the matrix
of gp. This inner product is extended in a natural way to differential forms. So each vector bundle ΛkT ∗M
carries a metric that allows us to define an inner product on the space of smooth k-forms on M by the following
formula

⟨α,β ⟩=
∫

M
g(α,β )vol.

Let α ∈ Ωk(M) be a k-form. Define the linear Hodge star operator ∗ : Ωk(M) → Ωn−k(M) such that for all
β ∈ Ωk(M)

α ∧∗β = g(α,β )vol.

So the inner product defined above can be expressed by the even simpler formula

⟨α,β ⟩=
∫

M
α ∧∗β .

It turns out that ∗∗α = (−1)k(n+k)α for α ∈ Ωk(M) and that β ∧∗α = α ∧∗β for all α,β ∈ Ωk (M).
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The codifferential d∗ : Ωk (M)→ Ωk−1 (M) in the exterior algebra may be expressed in terms of the Hodge
∗ operator; for β ∈ Ωk (M),

d∗
β = (−1)nk+n+1 ∗ (d ∗β ) .

Lemma 1. (See, for example, [18]) On a closed compact Riemannian manifold, d∗ is the formal adjoint of d
with respect to the global inner product defined above.

It follows that ∗ : Ωk(M)→ Ωn−k(M) is an isomorphism. Since ∗ commutes with ∆ = d∗d +dd∗, ∗ is the
Poincaré duality isomorphism of de Rham cohomology of a compact oriented manifold,

Hk(M)∼= Hn−k(M) for every 0 ≤ k ≤ n.

The interior product in the exterior algebra is defined in terms of the Hodge ∗ operator; for β ∈ Ωk (M) and
ω ∈ Ω1 (M) is a covector, the interior product ω⌟ : Ωk (M)→ Ωk−1 (M) is defined as

ω⌟β = (−1)nk+n ∗ (ω ∧∗β ) .

Lemma 2. The adjoint of ω∧ with respect to the inner product defined above is ω⌟.

Proof. Let β ∈ Ωk (M) and γ ∈ Ωk−1 (M), then

(γ,ω⌟β )vol = (−1)nk+n
γ ∧∗∗ (ω ∧∗β )

= (−1)nk+n+(n−k+1)(−k+1)
γ ∧ω ∧∗β

= (−1)k+1 (−1)k−1
ω ∧ γ ∧∗β

so that (γ,ω⌟β )vol = (ω ∧ γ,β )vol.

Laplace and Dirac type operators [18], [19] are examples of elliptic operators. We first define the principal
symbol of a differential or pseudodifferential operator. If π : E → M and π ′ : F → M are two vector bundles
and P : Γ(E)→ Γ(F) is a differential operator of order k acting on sections, then in local coordinates of a local
trivialization of the vector bundles P can be written as

P = ∑
|α|=k

sα(x)
∂ k

∂xα
+ lower order terms,

where the summation is over all possible multi-indices α = (α1, · · · ,αk) of length |α| = k and each sα(x) ∈
Hom(Ex,Fx) is a linear transformation. If ξ = ∑ξ jdx j ∈ T ∗

x (M) is a non-zero covector at x, we define the
principal symbol of P to be

σ(P)(ξ ) = ik ∑
|α|=k

sα(x)ξ α ∈ Hom(Ex,Fx),

where ξ α = ξα1 . · · · .ξαn . It turns out that the principal symbol is invariant under coordinate transformations.
One coordinate-free definition of σ(P)x : T ∗

x M → Hom(Ex,Fx) can be given as follows. For any ξ ∈ T ∗
x M

choose a locally defined function f such that d fx = ξ . Then we define the operator

σm(P)(ξ ) = lim
t→∞

1
tm (e−it f Peit f ),

where (e−it f Peit f )(u) = e−it f (P(eit f u)). Then the order k of the operator and symbol are defined to be k =
sup{m : σm(P)(ξ )} < ∞ and σ(P)(ξ ) = σk(P)(ξ ). It follows that if P and Q are two differential operators
such that the composition PQ is defined, then

σ(PQ)(ξ ) = σ(P)(ξ )σ(Q)(ξ ).

Definition 1. An elliptic differential operator P on M is defined to be an operator such that its principal symbol
σ(P)(ξ ) is invertible for all nonzero covectors ξ ∈ T ∗M.
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Example 4. The symbol of the Dirac operator D = ∑c(e j)∇e j is

σ(D)(ξ ) = i∑c(e j)ξ j = i∑c(ξ je j) = ic(ξ ♯).

The symbol of the Dirac Laplacian D2 is

σ(D2)(ξ ) = σ(D)(ξ )σ(D)(ξ ) = (ic(ξ ♯))2 = ∥ξ
♯∥2,

where ξ ♯ is the corresponding vector of the covector ξ induced by the metric on M. The last equality is a
consequence of the definition of Clifford multiplication; see [20]. Therefore for non-zero ξ , both these symbols
are invertible, and hence D and D2 are elliptic differential operators.
An operator P is strongly elliptic if there exists c > 0 such that

σ(P)(ξ )≥ c|ξ |2

for all non-zero ξ ∈ T ∗M. The Laplacian ∆ of Rn and D2 on Clifford bundle are strongly elliptic. For more
about elliptic differential operators on manifolds see [18], [19], [20].

3 Main result
Let M be a closed, compact, and oriented Riemannian manifold. We consider the de Rham operator for the

differential
dw : Ω

e/o(M)→ Ω
o/e(M),

where Ωe(M) and Ωo(M) denote the bundle of differential forms of even degree and odd degree respectively.
We choose a Riemannian metric g on M; this induces a volume form on M and Hermitian inner products on all
the spaces Ωk(M). Since dω is a linear differential operator and the bundle in question carries a Hermitian met-
ric induced from the Hermitian inner product, there exists an unique adjoint of dω , denoted by d∗

ω . Combining
dω and d∗

ω we obtain a deformed differential operator

Dω = dω +d∗
ω : Ω

e/o(M)→ Ω
o/e(M).

For each k, we define the Laplace operator ∆ω : Ωk(M) → Ωk(M) by the formula ∆ω = (dω + d∗
ω)

2 =
dω d∗

ω + d∗
ω dω . A form τ ∈ Ωk(M) is called ω-harmonic if ∆ω τ = 0. We denote H k

ω (M) = ker∆ω , the space
of all ω-harmonic forms of degree k. Notice that ∆ω is a second order, formally self adjoint, linear differential
operator on Ωk(M). Because dω and d∗

ω square to zero,

(∆ω α,β ) = (dω α,dω β )+(d∗
ω α,d∗

ω β ) = (α,∆ω β ) .

Theorem 1. ker∆ω is finite dimensional.

Proof. Since the principal symbols of dω +d∗
ω , and ∆ω are the same as that of d+d∗ and ∆, the operatorsdω +

d∗
ω and ∆ω are elliptic operators. The following sequence

Γ
(
M,Λ0(M)

) dω→ Γ
(
M,Λ1(M)

) dω→ ··· dω→ Γ(M,Λn(M))

is an elliptic complex, since the associated symbol sequence

0 → π
∗
Γ
(
M,Λ0(M)

) σ(dω )→ ·· · σ(dω )→ π
∗
Γ(M,Λn(M))→ 0

is exact, where Γ
(
M,Λk(M)

)
= Ωk(M) is the set of smooth sections of the bundle π : Λk(M)→ M, and σ(dω)

is the principal symbol of dω . See Chapter IV, Example 2.5 of [19]. We may therefore apply the theorem
concerning an elliptic differential complex of vector bundles (see Chapter IV, Theorem 5.2 of [19]) to conclude
that H k

ω (M) = ker∆ω is finite dimensional, and we have the following orthogonal decomposition of Ωk(M):

Ω
k(M) = H k

ω ⊕ im(∆ω G) ,

where G : Ωk(M)→ Ωk(M) is a Green’s operator.
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Now we can state and prove the Hodge theorem for the Morse-Novikov cohomology.

Theorem 2. Let (M,g) be a closed compact and oriented Riemannian manifold. Then H k
ω (M)∼= Hk

ω(M). In
other words, every Morse-Novikov cohomology class has a unique ω-harmonic representative.

Proof. Let α ∈ H k
ω (M), which is smooth by elliptic regularity. Then we have

(∆ω α,α) = 0
⇒ (dω α,dω α)+(d∗

ω α,d∗
ω α) = 0

⇒∥dω α∥2 +∥d∗
ω α∥2 = 0.

This implies that α is ω-harmonic if and only if dω α = 0 and d∗
ω α = 0. These ω-harmonic forms are

closed and therefore define classes in Morse-Novikov cohomology. We have a map I : H k
ω (M) → Hk

ω(M)
defined by I (α) = [α]. We show that this map is a bijection.

Suppose α ∈ H k
ω is dω exact, say α = dω τ for some τ ∈ Ωk−1(M). Then

∥α∥2 = (α,α) = (α,dω τ) = (d∗
ω α,τ) = 0,

and therefore α = 0. To prove the surjectivity, let α ∈ Ωk(M) such that dω α = 0. Then by the decomposition
Ωk(M) = H k

ω ⊕ im(∆ω G) , for some τ ∈ H k
ω (M) and β ∈ Ωk(M), we have

α = τ +∆ω Gβ = τ +dω d∗
ω Gβ +d∗

ω dω Gβ .

Applying dω on both sides of this equation, it follows that dω d∗
ω dω Gβ = 0, and therefore

∥d∗
ω dω Gβ∥2 = (d∗

ω dω Gβ ,d∗
ω dω Gβ ) = (dω Gβ ,dω d∗

ω dω Gβ )

proving that d∗
ω dω Gβ = 0. Hence we have α = τ +dω d∗

ω Gβ ; therefore [α] = [τ].

Now we give a proof of Poincaré duality for Morse-Novikov cohomology, see Proposition 3.5 [21], using
the Hodge star operator and the Hodge theorem for Morse-Novikov cohomology.

Theorem 3. If M is a closed compact oriented manifold of dimension n and ω is a closed 1-form, then the
Hodge star operator ∗ : Ωk(M)→ Ωn−k(M) induces the isomorphism

Hk
ω(M)∼= Hn−k

−ω (M).

Proof. From (ω⌟) = (−1)nk+n ∗ (ω∧)∗, ∗2 = (−1)k(n−k), and d∗ = (−1)n(k+1)+1 ∗d∗ on Ωk (M), we have the
following identities for operators acting on Ωk (M). For any β ∈ Ωk (M)

(ω⌟)∗β = (−1)n(n−k)+n ∗ (ω∧)∗2
β

= (−1)n2+nk+n (−1)k(n−k) ∗ (ω∧)β ,

so that (ω⌟)∗= (−1)k ∗ (ω∧) on Ωk (M). Also,

∗(ω⌟)β = (−1)nk+n ∗2 (ω∧)∗β

= (−1)nk+n (−1)(n−k+1)(n−(n−k+1)) (ω∧)∗β ,

so that ∗(ω⌟) = (−1)k+1 (ω∧)∗ on Ωk (M). Next

d∗ ∗β = (−1)n(n−k+1)+1 ∗d ∗2
β

= (−1)n(n−k+1)+1 (−1)k(n−k) ∗dβ ,

so that d∗∗= (−1)k+1 ∗d on Ωk (M). Finally

∗d∗
β = (−1)n(k+1)+1 ∗2 d ∗β
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= (−1)n(k+1)+1 (−1)(n−k+1)(n−(n−k+1)) d ∗β ,

so that ∗d∗ = (−1)k d∗ on Ωk (M). From these equations we have

(d∗+ω⌟)∗= (−1)k+1 ∗ (d −ω∧)
(d +ω∧)∗= (−1)k ∗ (d∗−ω⌟)

on Ωk (M). As before d∗ is the L2 adjoint of d, and ⌟ represents interior product. It turns out that the L2 adjoint
of dω = d +ω∧ is d∗

ω = d∗+ω⌟ and the Laplacian is ∆ω = (dω + d∗
ω)

2 = dω d∗
ω + d∗

ω dω = (d +ω∧)(d∗+
ω⌟)+(d∗+ω⌟)(d +ω∧). If β ∈ Ωk(M), then by the formulas above we have for all β ∈ Ωk (M),

∗∆ω β = ∗(d +ω∧)(d∗+ω⌟)β +∗(d∗+ω⌟)(d +ω∧)β
= (−1)k−1(d∗−ω⌟)∗ (d∗+ω⌟)β +(−1)k(d −ω∧)∗ (d +ω∧)β
= (−1)k−1(−1)k(d∗−ω⌟)(d −ω∧)∗β +(−1)k(−1)k+1(d −ω∧)(d∗−ω⌟)∗β

= −((d∗−ω⌟)(d −ω∧)+(d −ω∧)(d∗−ω⌟))∗β

= −∆−ω ∗β .

Thus the operator ∗ maps ω-harmonic forms to (−ω)-harmonic forms, so from the Hodge theorem for the
Morse-Novikov cohomology ∗ induces the required isomorphism.
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ABSTRACT 

This paper studies the two-dimensional magnetohydrodynamics steady incompressible Cu-water nanofluid 
flow considering different shapes of nanoparticles in a divergent channel. The continuity equation, momentum 
equations and energy equation governing the problem are transformed to a set of non-dimensional ordinary 
differential equations by suitable transformations. The transformed dimensionless equations are solved by 
using power series approach and then Hermite-Padé approximation method is applied for analyzing the 
solution. Brick, cylinder and platelet-shaped Cu-nanoparticles are considered to investigate the effect of shape 
factor. Moreover, impact of physical parameters such as channel angle, flow Reynolds number, Hartmann 
number, Eckert number, Prandtl number and nanoparticles solid volume fraction on velocity and temperature 
profiles are also examined. The results show that the different shapes of Cu-nanoparticles have significant 
effect on the temperature distributions in the channel. 
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1. Introduction 

Jeffery [1] and Hamel [2] discovered two dimensional viscous incompressible fluid flow in a channel with 

non-parallel walls. This flow is separated by a fixed angle and moved by a source or sink at a peak which is 

known as the classical Jeffery-Hamel flow. Many researchers [3-8] have investigated this flow considering 

various effects such as megnetohydrodynamics (MHD) and heat transfer phenomena through convergent-

divergent channels. These flows have the similarity solution of Navier-Stokes equation and the dimensionless 

parameters are depended on the flow Reynolds number and channel angular width [9]. This type of flows has 

several applications in industrial, aerospace, chemical, civil, environmental, mechanical and biomechanical 

engineering.  

Magnetohydrodynamics (MHD) is related to the mutual interaction of fluid flow and magnetic field. Many 

natural and man-made flows are influenced by magnetic field. The theory of megnetohydrodynamics (MHD) 

states that the presence of magnetic field produces a current through a moving conductive fluid. This inclined 

https://doi.org/10.3329/ganit.
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current results force on ions of the conductive fluid. The investigation of MHD flow through convergent-

divergent channels is not only interesting theoretically but also becomes more applications in mathematical 

modeling of several industries to design cooling system with liquid metals, MHD generators, accelerators, 

pumps and flow meters  

New types of fluids need to develop, which are more effective in terms of heat exchange performance 

considering the recent demands of modern technology, including chemical production, power station and 

microelectronics. Presently, it is seen that the thermal conductivity of fluids has been enhanced with 

nanoparticles by Choi [10]. Nanoparticles have unique chemical and physical properties and have better 

thermal conductivity and radiative heat transfer compared to the base fluid only. Nanofluids are engineered 

dilute colloidal dispersions of nanosized (less than 100 nm) particles in a base fluid such as water, oil and 

ethylene glycol analysed by Das et al. [11]. These nanoparticles are good conductors of heat and enable the 

basic fluids to enhance their thermal properties.  

An extension of the classical Jeffery-Hamel flows to magnetohydrodynamics was studied by Makinde 

and Mhone [12]. They explained that the effect of external magnetic field works as a parameter in the solution 

of magnetohydrodynamics flows in convergent-divergent channels. Makinde and Mhone [13] investigated the 

terrestrial development of small disturbances in magnetohydrodynamics Jeffery-Hamel flows. This concept 

described at very small magnetic Reynolds number Rm for the stability of hydromagnetic steady flows in 

convergent-divergent channels using Chebyshev spectral collocation method. Moradi et al. [14] described the 

effects of heat transfer and viscous dissipation on the Jeffery-Hamel flow of nanofluids. Alam et al. [15-16], 

Alam and Khan [17] studied MHD Jeffery-Hamel nanofluid flow for different nanoparticles.  

Recently, the effect of nanoparticle shapes on irreversibility analysis of nanofluid flow in a microchannel 

with radiative heat flux and convective heating was investigated by Sindhu and Gireesha [18]. Asifa et al. [19] 

performed a comparative fractional study of the significance of shape factor in heat transfer performance of 

molybdenum-disulfide nanofluid in multiple flow. Moreover, the effects of nanoparticle shape and size on the 

thermohydraulic performance of plate evaporator using hybrid nanofluids was analysed by Bhattad and Sarkar 

[20]. Furthermore, Das and Alam [21] investigated different shaped Al2O3 and TiO2 nanoparticles on water-

based MHD nanofluid flow through convergent-divergent channels. 

To the best of Author’s knowledge, the shape factors effect of Cu-water nanofluid flow in divergent 

channel is not available in open literature yet. This study aims to investigate magnetohydrodynamics Cu-water 

nanofluid flow in a divergent channel with the effects of three different shapes of nanoparticles; brick, cylinder 

and platelet. The impacts of various physical parameters namely channel angle 𝛼, Reynolds number Re, 

Hartmann number Ha, Eckert number Ec, Prandtl number Pr and nanoparticle solid volume fraction 𝜙 on 

velocity profiles and temperature distributions are also discussed. 

 

2. Mathematical Formulation 

Consider a two-dimensional viscous incompressible Cu-water nanofluid flow from a source or sink between 

two channel walls intersect at an angle 2𝛼 as seen in Fig.2.1. A cylindrical coordinate system (𝑟, 𝜑, 𝑧) is used 

and the velocity is considered to be purely radial such that it depends on 𝑟 and 𝜑 only. Thus there is no 

variation for the physical parameters along the 𝑧  direction.  The velocity field takes the form 𝑉 =
[𝑢(𝑟, 𝜑), 0,0]. An external magnetic field B0 is operated vertically downward to the top wall. Let 𝛼 be the 

semi-angle and the domain of the flow be  −|𝛼| < 𝜑 < |𝛼|. The continuity equation, momentum equations 

and energy equation with viscous dissipation and Joule heating in reduced polar coordinates are 

𝜌𝑛𝑓

𝑟

𝜕

𝜕𝑟
(𝑟𝑢(𝑟, 𝜑)) = 0,                                                                                                                                                  (2.1) 

𝑢(𝑟, 𝜑)
𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
= −

1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑟
+ 𝑣𝑛𝑓 (

𝜕2𝑢(𝑟, 𝜑)

𝜕𝑟2
+

1

𝑟

𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
+

1

𝑟2

𝜕2𝑢(𝑟, 𝜑)

𝜕𝜑2
−

𝑢(𝑟, 𝜑)

𝑟2
) −

𝜎𝑛𝑓𝐵0
2

𝜌𝑛𝑓𝑟2
𝑢(𝑟, 𝜑)     (2.2) 

1

𝜌𝑛𝑓𝑟

𝜕𝑝

𝜕𝜑
−

2𝑣𝑛𝑓

𝑟2

𝜕𝑢(𝑟, 𝜑)

𝜕𝜑
= 0,                                                                                                                                    (2.3) 
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𝑢(𝑟, 𝜑)
𝜕𝑇(𝑟, 𝜑)

𝜕𝑟
=

𝜅𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇(𝑟, 𝜑)

𝜕𝑟2
+

1

𝑟

𝜕𝑇(𝑟, 𝜑)

𝜕𝑟
+

1

𝑟2

𝜕2𝑇(𝑟, 𝜑)

𝜕𝜑2
) + 

𝜇𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(4 (
𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
)

2

+
1

𝑟2
(

𝜕𝑢(𝑟, 𝜑)

𝜕𝜑
)

2

) +
𝜎𝑛𝑓𝐵0

2

(𝜌𝑐𝑝)
𝑛𝑓

𝑟2
(𝑢(𝑟, 𝜑))

2
                                                            (2.4) 

 

The respective boundary conditions for the problem are as follows 

𝜓 =
𝑄

2
,

𝜕𝜓

𝜕𝜑
= 0  at 𝜑 = ±𝛼                

𝑇 = 𝑇ℎ  at 𝜑 = 𝛼  and 𝑇 = 𝑇𝑐   at 𝜑 = −𝛼                                                                                                   (2.5) 

where 𝜓 = 𝜓(𝑟, 𝜑) be the stream function and 
𝜕𝜓

𝜕𝜑
= 𝑢𝑟. The volumetric flow rate through the channel is 

defined by 

𝑄 = ∫ 𝑢𝑟𝑑𝜑                                                                                                                                                                  (2.6)
𝛼

−𝛼

 

Since the flow is symmetrically radial, i.e. 𝑣 = 0. Here, 𝐵0 is the electromagnetic induction, 𝑢 is the velocity 

along radial direction and 𝑝 is the fluid pressure. The effective density 𝜌𝑛𝑓, the effective dynamic viscosity 

𝜇𝑛𝑓, the electrical conductivity 𝜎𝑛𝑓 and the kinematic viscosity 𝑣𝑛𝑓 of the nanofluid are given as. 

𝜌𝑛𝑓 = 𝜌𝑓(1 − 𝜙) + 𝜌𝑠𝜙, 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
 ,      𝑣𝑛𝑓 =

𝜇𝑛𝑓

𝜌𝑛𝑓

  , 

𝜎𝑛𝑓

𝜎𝑓

= 1 + [3 (
𝜎𝑠

𝜎𝑓

− 1) 𝜙 ((
𝜎𝑠

𝜎𝑓

+ 2) − (
𝜎𝑠

𝜎𝑓

− 1) 𝜙)⁄ ]                                                                                   (2.7) 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

Fig. 2.1: Geometry of the Problem 

 

The corresponding effective thermal conductivity and heat capacity of nanofluid are 

𝜅𝑛𝑓 = 𝜅𝑓

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 − (𝑚 + 1)(𝜅𝑓 − 𝜅𝑠)𝜙

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 + (𝜅𝑓 − 𝜅𝑠)𝜙
, 
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(𝜌𝑐𝑝)
𝑛𝑓

= (1 − 𝜙)(𝜌𝑐𝑝)
𝑓

+ 𝜙(𝜌𝑐𝑝)
𝑠
                                                                                                                      (2.8) 

 

Here, 𝜙 is the nanoparticles solid volume fraction and 𝑚 is the shape factor. The thermophysical properties of 

water and Cu- nanoparticles as Das et al. [22] are presented in Table 2.1.  

Table 2.1: Thermophysical properties of water and Cu-nanoparticles. 

 

Physical properties Water Cu 

𝜌(𝑘𝑔 𝑚3⁄ ) 997.1 8933 

𝑐𝑃(𝐽 𝑘𝑔𝐾⁄ ) 4179 385 

𝜅(𝑊 𝑚𝐾⁄ ) 0.613 401 

𝜎(Ω𝑚) 0.05 5.96× 107 

 

The sphericity and shape factor of Cu-nanoparticles are shown in Table 2.2. As it necessitates 𝑄 ≥ 0, then the 

flow is diverging from a source at 𝑟 = 0 for 𝛼 > 0.  

 

The dimensionless variable 𝜂 is introduced as, 

   𝜂 =
𝜑

𝛼
 

Then the dimensionless stream function and temperature are defined by 

  𝐹(𝜂) =
2 𝜓(𝜑)

𝑄
, 𝜃(𝜂) =

𝑇 − 𝑇𝑐

𝑇ℎ − 𝑇𝑐

                                                                                                                             (2.9) 

 

Table 2.2: Sphericity and shape factor of Cu-nanoparticles [23-25]. 

 

Nanoparticle shapes Aspect ratio Sphericity Shape factor 

Platelet 1:1/18 0.52 5.7 

Cylinder 1:8 0.62 4.9 

Brick 1:1:1 0.81 3.7 

 

The pressure term 𝑝 is eliminated from equations (2.2) and (2.3) by using equation (2.9). The non-dimensional 

ordinary differential equations of steam function and temperature profile are reduced to the following form 

𝐹(𝑖𝑣) + 2𝛼 𝑅𝑒 𝐴(1 − 𝜙)2.5 𝐹′ 𝐹′′ + (4 − (1 − 𝜙)2.5 𝐷 𝐻𝑎2)𝛼2 𝐹′′ = 0,                                                       (2.10)  

𝜃′′ +
𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
[4𝛼2𝐹′2

+ (𝐹′′)2 + (1 − 𝜙)2.5 𝐷 𝐻𝑎2 𝛼2 𝐹′2
] = 0,                                                          (2.11) 

Here, prime denotes the differentiation with respect to 𝜂 . The similarity transforms reduce the boundary 

conditions as follows:  

𝐹 = 1, 𝐹′ = 0, 𝜃 = 1   at 𝜂 = 1          

𝐹 = −1, 𝐹′ = 0, 𝜃 = 0 at 𝜂 = −1                                                                                                                         (2.12) 

Where, 𝑅𝑒 =
𝑄

2𝑣𝑓
 is Reynolds number, 𝑃𝑟 =

(𝜇𝑐𝑝)
𝑓

𝜅𝑓
 is Prandtl number, 𝐸𝑐 =

𝑈𝑚𝑎𝑥
2

(𝑐𝑝)
𝑓

𝑇ℎ
 is the Eckert number, 
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𝐻𝑎2 =
𝜎𝑓𝐵0

2

𝜌𝑓𝑣𝑓
 is square of Hartmann number and 𝛼 is the channel angle. Moreover, 

𝐴 = (1 − 𝜙) +
𝜌𝑠

𝜌𝑓

𝜙,        𝐵 = (1 − 𝜙) +
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

𝜙 , 

𝐶 =
𝜅𝑠 + (𝑚 + 1)𝜅𝑓 − (𝑚 + 1)(𝜅𝑓 − 𝜅𝑠)𝜙

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 + (𝜅𝑓 − 𝜅𝑠)𝜙
 , 

𝐷 = 1 + [3 (
𝜎𝑠

𝜎𝑓
− 1) 𝜙 ((

𝜎𝑠

𝜎𝑓
+ 2) − (

𝜎𝑠

𝜎𝑓
− 1) 𝜙)⁄ ]      are the constants. 

 

3. Series Analysis 

The non-linear differential equations (2.10) and (2.11) are solved for stream function and temperature profile. 

To solve equations (2.10) and (2.11), the power series expansions are assumed in terms of the parameter 𝛼 as 

follows: 

𝐹(𝜂) = ∑ 𝐹𝑖(𝜂)𝛼𝑖,   𝜃(𝜂) = ∑ 𝜃𝑖(𝜂)𝛼𝑖,     𝑎𝑠  |𝛼| < 1                                                                                  (3.1)

∞

𝑖=0

∞

𝑖=0

 

By substituting the equation (3.1) into equations (2.10) and (2.11) along with the boundary conditions (2.12) 

and then equating the coefficient of power of 𝛼. 

Order zero(𝛼0): 

𝐹0
(𝑖𝑣)

= 0,       𝜃0
′′ +

𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
(𝐹0

′′)2 = 0                                                                                                             (3.2) 

𝐹0 = 1, 𝐹0
′ = 0, 𝜃0 = 1   𝑎𝑡 𝜂 = 1                                                                                                                              (3.3) 

𝐹0 = −1, 𝐹0
′ = 0, 𝜃0 = 0 𝑎𝑡 𝜂 = −1                                                                                                                         (3.4) 

Order one(𝛼1): 

𝐹1
(𝑖𝑣)

+ 2 𝑅𝑒 𝐴(1 − 𝜙)2.5𝐹0
′𝐹0

′′ = 0, 𝜃1
′′ +

𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
(2𝐹0

′′𝐹1
′′) = 0                                                              (3.5) 

𝐹1 = 0, 𝐹1
′ = 0, 𝜃1 = 0 𝑎𝑡 𝜂 = 1                                                                                                                                (3.6) 

𝐹1 = 0, 𝐹1
′ = 0, 𝜃1 = 0 𝑎𝑡 𝜂 = −1                                                                                                                             (3.7) 

The first 13 coefficients of the series for stream function 𝐹(𝜂) and temperature 𝜃(𝜂) have been calculated 

using algebraic programming language MAPLE. The first few coefficients of the series for 𝐹(𝜂) and 𝜃(𝜂) in 

terms of 𝛼, 𝑅𝑒, 𝐻𝑎, 𝐸𝑐, 𝑃𝑟, 𝜙, 𝐴, 𝐵, 𝐶, 𝐷 are as follows: 

𝐹(𝜂; 𝛼, 𝑅𝑒, 𝐻𝑎, 𝜑, 𝐴, 𝐷) =
3

2
𝜂 −

1

2
𝜂3 −

3

280
 𝑅𝑒 𝐴(1 − 𝜙)(5 2⁄ )𝜂(𝜂2 − 5)(𝜂 − 1)2(𝜂 + 1)2𝛼 + (

1

431200
𝜂(𝜂 −

1)2(𝜂 + 1)2(43120 + 14375 𝑅𝑒2 𝐴2 𝜙4 + 28750 𝑅𝑒2 𝐴2 𝜙2 − 2875 𝑅𝑒2 𝐴2 𝜙5) − 14375 𝑅𝑒2 𝐴2 𝜙 −

28750 𝑅𝑒2 𝐴2 𝜙3 − 98𝜂6 𝑅𝑒2 𝐴2 − 2472 𝜂2 𝑅𝑒2 𝐴2 + 954 𝜂4 𝑅𝑒2 𝐴2 − 10780√1 − 𝜙 𝐷 𝐻𝑎2 −

4795 𝜂4 𝑅𝑒2 𝐴2 𝜙 + 4795 𝜂4 𝑅𝑒2 𝐴2 𝜙4 + 9590 𝜂4 𝑅𝑒2 𝐴2 𝜙2 − 9590 𝜂4 𝑅𝑒2 𝐴2 𝜙3 +
98 𝜂6 𝑅𝑒2 𝐴2 𝜙5 + 490 𝜂6 𝑅𝑒2 𝐴2 𝜙5 − 980 𝜂6 𝑅𝑒2 𝐴2 𝜙2 + 980 𝜂6 𝑅𝑒2 𝐴2 𝜙3 − 490 𝜂6 𝑅𝑒2 𝐴2 𝜙4 −
959 𝜂4 𝑅𝑒2 𝐴2 𝜙5 + 2472 𝜂2 𝑅𝑒2 𝐴2 𝜙5 − 24720 𝜂2 𝑅𝑒2 𝐴2 𝜙2 + 24720 𝜂2𝑅𝑒2 𝐴2 𝜙3 −

12360 𝜂2 𝑅𝑒2 𝐴2 𝜙4 + 12360 𝜂2 𝑅𝑒2 𝐴2 𝜙 + 21560 √1 − 𝜙 𝐷 𝐻𝑎2 𝜙 − 10780 √1 − 𝜙 𝐷 𝐻𝑎2 𝜙2) 𝛼2 +
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𝑂(𝛼3)+. . .                                                                                                                                                                        (3.8)     

𝜃(𝜂;  𝛼, 𝑅𝑒, 𝐻𝑎, 𝜙, 𝐸𝑐, 𝑃𝑟, 𝐴, 𝐵, 𝐶, 𝐷) = −
1

4𝐶(1−𝜙)(5 2⁄ ) (1 + 𝜂)(3 𝐵 𝐸𝑐 Pr  𝜂3 − 3 𝐵 𝐸𝑐 Pr 𝜂2 +

3 𝐵 𝐸𝑐 Pr 𝜂 − 2 𝐶 (1 − 𝜙)(5 2⁄ ) − 3 𝐵 𝐸𝑐 𝑃𝑟) −
3

560 𝐶
 𝐵 𝐸𝑐 Pr 𝑅𝑒 𝐴(9𝜂4 − 38𝜂2 − 19) (𝜂 − 1)2(𝜂 +

1)2𝛼 + 𝑂(𝛼2)+. . .                                                                                                                                                          (3.9)  

 

4. Numerical Procedure: Hermite-Padé Approximants 

In this present study, a very effective solution method, known as Hermite-Padé approximants, which was first 

introduced by Padé [26] and Hermite [27] have been applied. In this method, a function is an approximant for 

the series 

𝑆𝑁−1(𝛼) = ∑ 𝑎𝑛𝛼𝑛          𝑎𝑠          |𝛼| < 1                                                                                                              (4.1)

𝑁−1

𝑛=0

 

If it shares with 𝑆, the similar first few series coefficients for |𝛼| < 1. Therefore, the simple approximants are 

the partial sums of the series 𝑆. As soon as this series converges quickly, such polynomial approximants can 

provide good approximations of the sum. 

Consider the (𝑑 + 1) tuple of polynomials, where 𝑑 is a positive integer, 

𝑃𝑁
[0]

, 𝑃𝑁
[1]

, … , 𝑃𝑁
[𝑑]

 

where,  deg 𝑃𝑁
[0]

+ deg 𝑃𝑁
[1]

+. . . + deg 𝑃𝑁
[𝑑]

+ 𝑑 = 𝑁,                                                                                            (4.2) 

is a Hermite-Padé form of these series if 

∑ 𝑃𝑁
[𝑖](𝛼)𝑆𝑖(𝛼) = 𝑂(𝛼𝑁)      𝑎𝑠       |𝛼| < 1                                                                                                            (4.3)

𝑑

𝑖=0

 

Here, 𝑆0(𝛼), 𝑆1(𝛼), … , 𝑆𝑑(𝛼) may be independent series or different form of a unique series. It requires to find 

the polynomials 𝑃𝑁
[𝑖]

 that satisfy the equation (4.2-4.3). These polynomials are fully determined by their 

coefficients. Thus, the total number of unknowns in equation (4.3) is 

∑ deg 𝑃𝑁
[𝑖]

+ 𝑑 + 1 = 𝑁 + 1                                                                                                                                      (4.4)

𝑑

𝑖=0

 

Expanding the left hand side of equation (4.3) in powers of 𝛼 and equating the first 𝑁 equations of the system 

equal to zero, we get a system of linear homogeneous equations. To compute the coefficients of the Hermite-

Padé polynomials, it requires the normalization form, such as 

𝑃𝑁
[𝑖](0) = 1  for some integer  0 ≤ 𝑖 ≤ 𝑑                                                                                                                  (4.5) 

It is necessary to emphasize that the only input required for the computation of the Hermite-Padé polynomials 

are the first 𝑁 coefficients of the series 𝑆0(𝛼), 𝑆1(𝛼), … , 𝑆𝑑(𝛼). The equation (4.4) simply ensures that the 

coefficient matrix associated with the system is square. One approach to construct the Hermite-Padé 

polynomials is to solve the system of linear equations using any standard method such as Gaussian elimination 

or Gauss-Jordan elimination. 

Drazin and Tourigney [28] approximant is a particular kind of algebraic approximants and Khan [29] 

introduced High-order differential approximant (HODA) as a special type of differential approximants. 

Drazin-Tourigney differential approximant is applied to both the series solutions (3.8) and (3.9) to analyse the 

results. Then, the influence of physical parameters namely channel angle 𝛼, Reynolds number Re, Hartmann 

number Ha, nanoparticles volume fraction 𝜙 , Eckert number Ec on velocity profiles and temperature 

distributions with the effect of three different shapes of Cu-nanoparticles is presented in section 5.  
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5. Results and Discussion 

Three different shapes’ effects of nanoparticles such as:  brick, cylinder and platelet are analysed on velocity 

profiles and temperature distributions for varying values of physical parameters such as; nanoparticles solid 

volume friction 𝝓, channel angle 𝜶, Reynolds number 𝑹𝒆, Hartmann number 𝑯𝒂, Eckert number 𝑬𝒄 and 

Prandtl number 𝑷𝒓 in the present study. 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

                                                          (a)                                                                                                            (b) 

Fig. 5.1: (a) Velocity Profiles, (b) temperature distributions of Cu –water nanofluid with different values of 𝛼 at 𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝜙 =

0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
                                                        (a)                                                                                                            (b)   

Fig. 5.2: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid with different values of 𝑅𝑒 at 𝛼 = 𝜋 18⁄ , 𝐻𝑎 =
1, 𝜙 = 0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

The channel angle effect on the velocity profiles and temperature distributions for Cu-water nanofluid in the 

divergent channel is shown in Figs. 5.1(a-b). It is observed in Fig. 5.1 (a) that, the velocity around the centerline 

increases for the rising values of 𝛼. One can also see that the rising values of channel opening 𝛼 produces 

backward flow adjacent to the two walls of the channel. Cu –nanoparticle (at 𝜙 = 0.05) accelerate the 

enhancement of centerline velocities more swiftly and there occurs major backward flow near the walls for 

large value of 𝛼 = 𝜋 6⁄ . It is noticed that if channel opening expands, then exhibited flow generates at the 

centerline and as a result, a major backward flow raised near the walls for diverging channel. The hypothesis 

of Fig. 5.1(a) agreed well with those results of Alam et al. [17].  
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                                                   (a)                                                                                                                 (b) 

Fig. 5.3: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid with different values of 𝐻𝑎 at 𝛼 = 𝜋 18⁄ , 𝑅𝑒 =
10, 𝜙 = 0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

                                                      (a)                                                                                                                 (b) 

Fig. 5.4: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid for different values of  𝜙 at 𝛼 =
𝜋 18, 𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝐸𝑐 = 0.1, 𝑃𝑟 = 7.1⁄ . 

 

Figure 5.1(b) represents the effect of channel angle 𝛼 on temperature profiles. It is noticed that the temperature 

increases massively around the channel centerline due to the escalating values of channel angle for Cu-

nanoparticles. There is almost negligible change in the temperature of the fluid near the walls of the channel. 

Figures 5.2(a-b) highlight the velocity profiles and temperature distributions of Cu-water nanofluid for the 

increment of Reynolds number 𝑅𝑒. It is interestingly observed in Fig. 5.2(a) that the centerline velocity 

increases when the value of 𝑅𝑒 increases, since backward flow arises at the walls. Since Reynolds number is 

the ratio of momentum forces and the viscous forces. This means that higher values of 𝑅𝑒 are due to the 

stronger momentum forces for Cu –water nanofluid. Due to this reason, these forces generate fully developed 

flow at centerline and an important reverse flow at the channel walls. For increasing values of 𝑅𝑒 on the 

variations in temperature are portrayed in Fig. 5.2(b). Since 𝑅𝑒 is the ratio of momentum forces and viscous 

forces, it indicates that stronger momentum forces are responsible for rising temperature in divergent channel 

case. The increasing values of 𝛼 and 𝑅𝑒 accelerate the fluid velocity around the channel centerline. These 

expanded fluid flow produces consistently higher temperature in Figs. 5.1(b) and 5.2(b). It is seen that the 

brick-shaped nanoparticles have higher temperature followed by cylinder- and platelet- shaped nanoparticles 

in all incidents.  
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For a divergent channel, the effects of increasing Hartmann number 𝐻𝑎 on the velocity profile and temperature 

distribution are plotted in Figs. 5.3(a-b). The velocity curves show that the rate of alteration is significantly 

reduced with increase of Hartmann number. The velocity along the centerline (−0.5 < 𝜂 < 0.5) reduces for 

the increasing value of 𝐻𝑎 . The velocity decreases near the left wall (−1.0 < 𝜂 < −0.5) and right wall 

(0.5 < 𝜂 < 1.0) uniformly for the decreasing value of 𝐻𝑎. The variation of 𝐻𝑎 leads to the variation of the 

Lorentz force due to magnetic field. This Lorentz force produces more resistance to the alternation phenomena. 

Figure 5.3(b) demonstrate the effect of Hartmann number on temperature field for Cu–nanoparticles. The  

higher values of temperature around channel centerline are observed for rising Hartmann number 𝐻𝑎. Near 

the walls of the channel, there is almost negligible change in the temperature of the fluid. It can be seen that 

brick –shaped nanoparticles have higher temperature than cylinder – and platelet –shaped nanoparticles. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

                                                        (a)                                                                                                              (b) 

Fig. 5.5: Temperature profiles of Cu –nanoparticles for different values of (a) 𝐸𝑐 and (b) 𝑃𝑟 at 𝛼 = 𝜋 18, 𝜙 = 0.05, 𝑅𝑒 = 10, 𝐻𝑎 = 1⁄ . 

 

 

The effect of solid volume fraction 𝜙 of Cu -nanoparticles is investigated in the range of 0 ≤ 𝜙 ≤ 0.15 with 

𝐻𝑎 = 1 and is displayed in Figs. 5.4(a-b). In Fig. 5.4(a), it is observed that as the solid volume fraction 𝜙 

increases, the velocity increases. The volume fraction 𝜙 increases when the nanofluids consistency increases 

and this increasing consistency enhances the fluid flow. For the increasing value of solid volume fraction the 

velocity expands, but the difference in the velocity is very small. The effects of Cu–nanoparticles solid volume 

fraction 𝜙 on temperature distributions with various shape factors are shown in Fig. 5.4(b). It is observed that 

when the value of 𝜙 increases, the temperature distribution reduces particularly toward the channel centerline. 

When 𝜙 = 0.00, there is almost negligible change in the temperature of the fluid for three different shaped 

nanoparticles which is consistent.  

 

Table 5.1: Comparison of the solutions for different number of coefficients of stream function 𝐹 when  

𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝛼 = 𝜋 18⁄ , ∅ = 0.05 
 
𝜂 𝑁 = 5 𝑁 = 6 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10 𝑁 = 11 𝑁 = 12 𝑁 = 13 

-1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 

-0.8 -0.9571418 -0.9571878 -0.9572025 -0.9572074 -0.9572091 -0.9572096 -0.9572098 -0.9572099 -0.9572099 

-0.6 -0.8263751 -0.8265170 -0.8265623 -0.8265773 -0.8265824 -0.8265841 -0.8265847 -0.8265850 -0.8265850 

-0.4 -0.6105530 -0.6107610 -0.6108278 -0.6108499 -0.6108574 -0.6108600 -0.6108609 -0.6108612 -0.6108614 

-0.2 -0.3251298 -0.3252911 -0.3253434 -0.3253608 -0.3253667 -0.3253688 -0.3253695 -0.3253697 -0.3253698 

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
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0.2 0.3251298 0.3252911 0.3253434 0.3253608 0.3253667 0.3253688 0.3253695 0.3253697 0.3253698 

0.4 0.6105530 0.6107610 0.6108278 0.6108499 0.6108574 0.6108600 0.6108609 0.6108612 0.6108614 

0.6 0.8263751 0.8265170 0.8265623 0.8265773 0.8265824 0.8265841 0.8265847 0.8265850 0.8265850 

0.8 0.9571418 0.9571878 0.9572025 0.9572074 0.9572091 0.9572096 0.9572098 0.9572099 0.9572099 

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

For other values of 𝜙, the brick-shaped nanoparticles have highest temperature values compared to cylinder-

shaped and platelet-shaped nanoparticles. The effect of Eckert number, 𝐸𝑐 on temperature field for Cu –

nanoparticles within the channel is discussed in Fig. 5.5(a). We know that Eckert number is the ratio of the 

square of maximum velocity and specific heat. As a result, it is found from Fig. 5.5(a) that the temperature 

increases at this region and the fluid flow rate along the centerline becomes faster for increasing values of 

Eckert number. The effect due to the dissipation term in energy equation is defined by Eckert number. From 

this figure, it can also be verified that due to the stronger viscous forces, the temperature of the fluid rises in 

divergent channel. Variations of Prandtl number, 𝑃𝑟 on temperature profiles are plotted in Fig. 5.5(b) for Cu-

nanoparticles. Rise in temperature for higher values of Prandtl number is observed for Cu–nanoparticles. 

Prandtl number is the ratio of viscous force and thermal force. Increase of viscosity is responsible for the 

increasing values of 𝑃𝑟. Thus, the increasing value of temperature distribution of the fluid is seen close to the 

centerline of the channel. Table 5.1 represents the comparative values of stream function for different numbers 

of coefficients of the solution (3.8). It is observed that if the number of coefficients in the solution increases 

from 

𝑁 = 5  to 𝑁 = 13, the values of stream function 𝐹 increase gradually and uniformly for all values of 𝜂. 
 

6. Conclusions 

This paper has studied magnetohydrodynamics (MHD) Cu-water nanofluid flow in a divergent channel 

with the effects of three different shapes of nanoparticles. The influences of different flow parameters on 

the velocity field and temperature distribution are extensively analysed. The three shapes of nanoparticles 

are brick, cylinder and platelet –shaped. The major conclusions of this work are as follows: 

 The increasing values of 𝛼 and 𝑅𝑒 speed up the fluid velocity around the channel centerline 
and these developd flow produce higher temperature values in this region.  

 The fluid velocity lessens while the temperature increases near the channel centerline at 
greater values of Hartmann number. Besides, fluid flow close the two walls increases as 𝐻𝑎 
increases. 

 The velocity profile rises however the temperature reduces for escalating values of the 
nanoparticles volume fraction. 

 As the values of Eckert number and Prandtl number increased, the temperature distributions 
around the channel centerline become higher. 

 The temperature field inside the channel affected significantly by the nanoparticles shape 
factors. Brick-shaped nanoparticles have larger temperature values than the cylinder-shaped 
and platelet-shaped nanoparticles. 
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